scispace - formally typeset
Journal ArticleDOI

A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.

Reads0
Chats0
TLDR
An MCM-41 type mesoporous silica nanosphere-based controlled-release delivery system has been synthesized and characterized using surface-derivatized cadmium sulfide nanocrystals as chemically removable caps to encapsulate several pharmaceutical drug molecules and neurotransmitters inside the organically functionalized MSN Mesoporous framework.
Abstract
An MCM-41 type mesoporous silica nanosphere-based (MSN) controlled-release delivery system has been synthesized and characterized using surface-derivatized cadmium sulfide (CdS) nanocrystals as chemically removable caps to encapsulate several pharmaceutical drug molecules and neurotransmitters inside the organically functionalized MSN mesoporous framework. We studied the stimuli-responsive release profiles of vancomycin- and adenosine triphosphate (ATP)-loaded MSN delivery systems by using disulfide bond-reducing molecules, such as dithiothreitol (DTT) and mercaptoethanol (ME), as release triggers. The biocompatibility and delivery efficiency of the MSN system with neuroglial cells (astrocytes) in vitro were demonstrated. In contrast to many current delivery systems, the molecules of interest were encapsulated inside the porous framework of the MSN not by adsorption or sol−gel types of entrapment but by capping the openings of the mesoporous channels with size-defined CdS nanoparticles to physically block...

read more

Citations
More filters
Journal ArticleDOI

Silica-based mesoporous organic-inorganic hybrid materials.

TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
Journal ArticleDOI

Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers

TL;DR: This review highlights the recent research developments of a series of surface-functionalized mesoporous silica nanoparticle (MSN) materials as efficient drug delivery carriers and envision that these MSN-based systems have a great potential for a variety of drug delivery applications.
Journal ArticleDOI

Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications

TL;DR: This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces.
Journal ArticleDOI

Mesoporous materials for drug delivery.

TL;DR: This Minireview deals with the advances in this field by the control of the textural parameters, surface functionalization, and the synthesis of sophisticated stimuli-response systems.
Journal ArticleDOI

Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery

TL;DR: The in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure.
References
More filters
Journal ArticleDOI

A new generation of Ca2+ indicators with greatly improved fluorescence properties.

TL;DR: A new family of highly fluorescent indicators has been synthesized for biochemical studies of the physiological role of cytosolic free Ca2+ using an 8-coordinate tetracarboxylate chelating site with stilbene chromophores that offer up to 30-fold brighter fluorescence.
Journal ArticleDOI

Polymeric Systems for Controlled Drug Release

TL;DR: Kevin Shakesheff investigates new methods of engineering polymer surfaces and the application of these engineered materials in drug delivery and tissue engineering.
Journal ArticleDOI

A New Property of MCM-41: Drug Delivery System

TL;DR: In this paper, a new application of MCM-41 mesoporous materials has been developed, where two kinds of surfactants, C16TAB and C12TAB, have been employed to get different pore sizes.
Journal ArticleDOI

Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age

TL;DR: A review of methods of preparing hybrid inorganic-organic mesoporous silicates with uniform channel structures, as well as some of their applications can be found in this article, where both reactive and passive organic groups can be incorporated in the porous solids by grafting methods or by co-condensation under surfactant control.
Journal ArticleDOI

Periodic Mesoporous Silica-Based Organic−Inorganic Nanocomposite Materials

TL;DR: The area of periodic mesoporous materials prepared by cooperative assembly in the presence of amphiphile molecules underwent dramatic growth as discussed by the authors, and many types may be regrouped in the future.
Related Papers (5)