scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A meta‐analysis of bees' responses to anthropogenic disturbance

TL;DR: Both bee abundance and species richness were significantly, negatively affected by disturbance, however, the magnitude of the effects was not large and the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains.
Abstract: Pollinators may be declining globally, a matter of concern because animal pollination is required by most of the world's plant species, including many crop plants. Human land use and the loss of native habitats is thought to be an important driver of decline for wild, native pollinators, yet the findings of published studies on this topic have never been quantitatively synthesized. Here we use meta-analysis to synthesize the literature on how bees, the most important group of pollinators, are affected by human disturbances such as habitat loss, grazing, logging, and agriculture. We obtained 130 effect sizes from 54 published studies recording bee abundance and/or species richness as a function of human disturbance. Both bee abundance and species richness were significantly, negatively affected by disturbance. However, the magnitude of the effects was not large. Furthermore, the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains. Therefore, it would be premature to draw conclusions about habitat loss having caused global pollinator decline without first assessing the extent to which the existing studies represent the status of global ecosystems. Future pollinator declines seem likely given forecasts of increasing land-use change.
Citations
More filters
Journal ArticleDOI
TL;DR: The nature and extent of reported declines, and the potential drivers of pollinator loss are described, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them are reviewed.
Abstract: Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.

4,608 citations

Journal ArticleDOI
01 Mar 2011-Oikos
TL;DR: The global number and proportion of animal pollinated angiosperms is estimated as 308 006, which is 87.5% of the estimated species-level diversity of fl owering plants.
Abstract: It is clear that the majority of fl owering plants are pollinated by insects and other animals, with a minority utilising abiotic pollen vectors, mainly wind. However there is no accurate published calculation of the proportion of the ca 352 000 species of angiosperms that interact with pollinators. Widely cited fi gures range from 67% to 96% but these have not been based on fi rm data. We estimated the number and proportion of fl owering plants that are pollinated by animals using published and unpublished community-level surveys of plant pollination systems that recorded whether each species present was pollinated by animals or wind. Th e proportion of animal-pollinated species rises from a mean of 78% in temperate-zone communities to 94% in tropical communities. By correcting for the latitudinal diversity trend in fl owering plants, we estimate the global number and proportion of animal pollinated angiosperms as 308 006, which is 87.5% of the estimated species-level diversity of fl owering plants. Given current concerns about the decline in pollinators and the possible resulting impacts on both natural communities and agricultural crops, such estimates are vital to both ecologists and policy makers. Further research is required to assess in detail the absolute dependency of these plants on their pollinators, and how this varies with latitude and community type, but there is no doubt that plant – pollinator interactions play a signifi cant role in maintaining the functional integrity of most terrestrial ecosystems. Plant – pollinator relationships may be one of the most ecologically important classes of animal – plant interaction: without pollinators, many plants could not set seed and reproduce; and without plants to provide pollen, nectar and other rewards, many animal populations would decline, with consequent knock-on eff ects for other species (Kearns et al.

2,448 citations


Cites background from "A meta‐analysis of bees' responses ..."

  • ...…of the functional importance of biotic pollination, recent evidence for declines in native pollinator abundance and diversity has generated widespread concern (Biesmeijer et al. 2006, Kosior et al. 2007, Colla and Packer 2008, Grixti et al. 2009, Winfree et al. 2009, though see Ghazoul 2005)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems.
Abstract: Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.

2,293 citations

Journal ArticleDOI
18 Oct 2017-PLOS ONE
TL;DR: This analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study, and shows that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline.
Abstract: Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

2,065 citations

Journal ArticleDOI
TL;DR: This review uses knowledge gained from human‐modified landscapes to suggest eight hypotheses, which it hopes will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services.
Abstract: Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on

1,513 citations

References
More filters
Book
01 Dec 1969
TL;DR: The concepts of power analysis are discussed in this paper, where Chi-square Tests for Goodness of Fit and Contingency Tables, t-Test for Means, and Sign Test are used.
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures.

115,069 citations


"A meta‐analysis of bees' responses ..." refers methods in this paper

  • ...On the other hand, the effect of disturbance on bees was not strong (weighted-mean effect size ¼ 0.32 for abundance and 0.37 for species richness), using a rule of thumb whereby effect sizes 0.2 are considered ‘‘small’’ and those 0.5 are ‘‘medium’’ (Cohen 1969)....

    [...]

Book
01 Jan 1985
TL;DR: In this article, the authors present a model for estimating the effect size from a series of experiments using a fixed effect model and a general linear model, and combine these two models to estimate the effect magnitude.
Abstract: Preface. Introduction. Data Sets. Tests of Statistical Significance of Combined Results. Vote-Counting Methods. Estimation of a Single Effect Size: Parametric and Nonparametric Methods. Parametric Estimation of Effect Size from a Series of Experiments. Fitting Parametric Fixed Effect Models to Effect Sizes: Categorical Methods. Fitting Parametric Fixed Effect Models to Effect Sizes: General Linear Models. Random Effects Models for Effect Sizes. Multivariate Models for Effect Sizes. Combining Estimates of Correlation Coefficients. Diagnostic Procedures for Research Synthesis Models. Clustering Estimates of Effect Magnitude. Estimation of Effect Size When Not All Study Outcomes Are Observed. Meta-Analysis in the Physical and Biological Sciences. Appendix. References. Index.

9,769 citations


"A meta‐analysis of bees' responses ..." refers background or methods in this paper

  • ...Large differences and low variability generate the largest effect sizes (Hedges and Olkin 1985, Rosenberg et al. 2000, Gurevitch and Hedges 2001)....

    [...]

  • ...The heterogeneity of effect sizes was examined with Q statistics (Hedges and Olkin 1985), which can be used to determine whether the variance among effect sizes is greater than expected by chance (Cooper 1998)....

    [...]

Journal ArticleDOI
25 Jul 1997-Science
TL;DR: Human alteration of Earth is substantial and growing as discussed by the authors, between one-third and one-half of the land surface has been transformed by human action; the carbon dioxide concentration in the atmosphere has increased by nearly 30 percent since the beginning of the Industrial Revolution; more atmospheric nitrogen is fixed by humanity than by all natural terrestrial sources combined; more than half of all accessible surface fresh water is put to use by humanity; and about one-quarter of the bird species on Earth have been driven to extinction.
Abstract: Human alteration of Earth is substantial and growing. Between one-third and one-half of the land surface has been transformed by human action; the carbon dioxide concentration in the atmosphere has increased by nearly 30 percent since the beginning of the Industrial Revolution; more atmospheric nitrogen is fixed by humanity than by all natural terrestrial sources combined; more than half of all accessible surface fresh water is put to use by humanity; and about one-quarter of the bird species on Earth have been driven to extinction. By these and other standards, it is clear that we live on a human-dominated planet.

8,831 citations

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations


"A meta‐analysis of bees' responses ..." refers background in this paper

  • ...1), and increasing land-use change is predicted to be the greatest cause of biodiversity losses in the future (Sala et al. 2000), future losses of pollinators seem likely....

    [...]

Journal ArticleDOI
TL;DR: Quantitative procedures for computing the tolerance for filed and future null results are reported and illustrated, and the implications are discussed.
Abstract: For any given research area, one cannot tell how many studies have been conducted but never reported. The extreme view of the "file drawer problem" is that journals are filled with the 5% of the studies that show Type I errors, while the file drawers are filled with the 95% of the studies that show nonsignificant results. Quantitative procedures for computing the tolerance for filed and future null results are reported and illustrated, and the implications are discussed. (15 ref) (PsycINFO Database Record (c) 2012 APA, all rights reserved)

7,159 citations


"A meta‐analysis of bees' responses ..." refers methods in this paper

  • ...Finally, we used Rosenberg’s 2005 fail-safe number calculator to estimate the number of nonsignificant, unpublished studies that would need to be added to a meta-analysis to nullify its overall effect size (Rosenthal 1979)....

    [...]