scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Meta-Analysis of Cytokines in Alzheimer's Disease

TL;DR: The results strengthen the clinical evidence that AD is accompanied by an inflammatory response, particularly higher peripheral concentrations of IL-6, TNF-α, IL-1β, TGF-β,IL-12 and IL-18 and higher CSF concentrations of T GF-β.
About: This article is published in Biological Psychiatry.The article was published on 2010-11-15. It has received 866 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: As inflammation in AD primarily concerns the innate immune system — unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides — the concept of neuroinflammation in AD may need refinement.
Abstract: The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.

1,523 citations

Journal ArticleDOI
TL;DR: An overview of inflammation in AD is provided and a detailed coverage of a number of microglia‐related signaling mechanisms that have been implicated in AD are reviewed.

1,088 citations


Cites background from "A Meta-Analysis of Cytokines in Alz..."

  • ...[267] Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J,...

    [...]

  • ...A meta-analysis of 40 studies revealed that peripheral cytokines, including TNF-a, IL-1b, and IL-6, and TGF-b are higher in patients with AD [267]....

    [...]

Journal ArticleDOI
TL;DR: The interrelationships between Neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD are discussed, focusing on microglia as major players in neuro inflammation and how these cells could be modulated as a therapeutic strategy for AD.
Abstract: Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60–70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD. Accumulating evidence indicates important roles for microglial activation and neuroinflammation in Alzheimer disease (AD). Here, Leng and Edison describe the interplay between microglial activation and AD-related pathologies and discuss how microglial priming and activation might influence the trajectory of AD.

859 citations

Journal ArticleDOI
TL;DR: The concept of microglial priming, and the subsequent exaggerated response of these cells to secondary systemic inflammation, opens the way to treat neurodegenerative diseases by targeting systemic disease or interrupting the signalling pathways that mediate the CNS response to systemic inflammation.
Abstract: Under physiological conditions, the number and function of microglia--the resident macrophages of the CNS--is tightly controlled by the local microenvironment. In response to neurodegeneration and the accumulation of abnormally folded proteins, however, microglia multiply and adopt an activated state--a process referred to as priming. Studies using preclinical animal models have shown that priming of microglia is driven by changes in their microenvironment and the release of molecules that drive their proliferation. Priming makes the microglia susceptible to a secondary inflammatory stimulus, which can then trigger an exaggerated inflammatory response. The secondary stimulus can arise within the CNS, but in elderly individuals, the secondary stimulus most commonly arises from a systemic disease with an inflammatory component. The concept of microglial priming, and the subsequent exaggerated response of these cells to secondary systemic inflammation, opens the way to treat neurodegenerative diseases by targeting systemic disease or interrupting the signalling pathways that mediate the CNS response to systemic inflammation. Both lifestyle changes and pharmacological therapies could, therefore, provide efficient means to slow down or halt neurodegeneration.

805 citations

Journal ArticleDOI
TL;DR: Current understanding of the involvement of cytokines in neurodegenerative disorders and their potential signaling mechanisms are summarized to suggest that microglial activation and pro-inflammatory cytokines merit interest as targets in the treatment of neurodegnerative disorders.

760 citations

References
More filters
Reference EntryDOI
11 Jun 2013

113,134 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations


"A Meta-Analysis of Cytokines in Alz..." refers methods in this paper

  • ...Risk of publication bias was assessed using funnel plots and ank correlation tests between effect size and sample size (27,28)....

    [...]

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations

Journal ArticleDOI
TL;DR: It is concluded that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity, and one or both should be presented in publishedMeta-an analyses in preference to the test for heterogeneity.
Abstract: The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity.

25,460 citations


"A Meta-Analysis of Cytokines in Alz..." refers methods in this paper

  • ...Inonsistency was calculated using an I(2) index to determine the imact of heterogeneity (25)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an adjusted rank correlation test is proposed as a technique for identifying publication bias in a meta-analysis, and its operating characteristics are evaluated via simulations, and the test statistic is a direct statistical analogue of the popular funnel-graph.
Abstract: An adjusted rank correlation test is proposed as a technique for identifying publication bias in a meta-analysis, and its operating characteristics are evaluated via simulations. The test statistic is a direct statistical analogue of the popular "funnel-graph." The number of component studies in the meta-analysis, the nature of the selection mechanism, the range of variances of the effect size estimates, and the true underlying effect size are all observed to be influential in determining the power of the test. The test is fairly powerful for large meta-analyses with 75 component studies, but has only moderate power for meta-analyses with 25 component studies. However, in many of the configurations in which there is low power, there is also relatively little bias in the summary effect size estimate. Nonetheless, the test must be interpreted with caution in small meta-analyses. In particular, bias cannot be ruled out if the test is not significant. The proposed technique has potential utility as an exploratory tool for meta-analysts, as a formal procedure to complement the funnel-graph.

13,373 citations

Related Papers (5)