scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A method and server for predicting damaging missense mutations.

TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.
Abstract: To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naive Bayes classifier (Supplementary Methods). Figure 1 PolyPhen-2 pipeline and prediction accuracy. (a) Overview of the algorithm. (b) Receiver operating characteristic (ROC) curves for predictions made by PolyPhen-2 using five-fold cross-validation on HumDiv (red) and HumVar3 (light green). UniRef100 (solid ... We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naive Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends thatclinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.

17,834 citations

Journal ArticleDOI
TL;DR: An updated protocol for Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants for a user's protein sequence.
Abstract: Phyre2 is a web-based tool for predicting and analyzing protein structure and function. Phyre2 uses advanced remote homology detection methods to build 3D models, predict ligand binding sites, and analyze amino acid variants in a protein sequence. Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2 . A typical structure prediction will be returned between 30 min and 2 h after submission.

7,941 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: Treatment efficacy was associated with a higher number of mutations in the tumors, and a tumor-specific T cell response paralleled tumor regression in one patient, suggesting that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.
Abstract: Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

6,215 citations

Journal ArticleDOI
TL;DR: The ability of CADD to prioritize functional, deleterious and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current single-annotation method.
Abstract: Our capacity to sequence human genomes has exceeded our ability to interpret genetic variation. Current genomic annotations tend to exploit a single information type (e.g. conservation) and/or are restricted in scope (e.g. to missense changes). Here, we describe Combined Annotation Dependent Depletion (CADD), a framework that objectively integrates many diverse annotations into a single, quantitative score. We implement CADD as a support vector machine trained to differentiate 14.7 million high-frequency human derived alleles from 14.7 million simulated variants. We pre-compute “C-scores” for all 8.6 billion possible human single nucleotide variants and enable scoring of short insertions/deletions. C-scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory effects, and complex trait associations, and highly rank known pathogenic variants within individual genomes. The ability of CADD to prioritize functional, deleterious, and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current annotation.

4,956 citations


Cites methods from "A method and server for predicting ..."

  • ...(6) We obtained the expression fold change for each base substitution in ALDOB and ECR11 from Patwardhan et al....

    [...]

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

References
More filters
MonographDOI
TL;DR: The art and science of cause and effect have been studied in the social sciences for a long time as mentioned in this paper, see, e.g., the theory of inferred causation, causal diagrams and the identification of causal effects.
Abstract: 1. Introduction to probabilities, graphs, and causal models 2. A theory of inferred causation 3. Causal diagrams and the identification of causal effects 4. Actions, plans, and direct effects 5. Causality and structural models in the social sciences 6. Simpson's paradox, confounding, and collapsibility 7. Structural and counterfactual models 8. Imperfect experiments: bounds and counterfactuals 9. Probability of causation: interpretation and identification Epilogue: the art and science of cause and effect.

12,606 citations

Journal ArticleDOI
TL;DR: SIFT is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study and can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms.
Abstract: Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

5,318 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: A World Wide Web server is presented to predict the effect of an nsSNP on protein structure and function and the dependence of selective pressure on the structural and functional properties of proteins is studied.
Abstract: Human single nucleotide polymorphisms (SNPs) represent the most frequent type of human population DNA variation. One of the main goals of SNP research is to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. Non-synonymous coding SNPs (nsSNPs) comprise a group of SNPs that, together with SNPs in regulatory regions, are believed to have the highest impact on phenotype. Here we present a World Wide Web server to predict the effect of an nsSNP on protein structure and function. The prediction method enabled analysis of the publicly available SNP database HGVbase, which gave rise to a dataset of nsSNPs with predicted functionality. The dataset was further used to compare the effect of various structural and functional characteristics of amino acid substitutions responsible for phenotypic display of nsSNPs. We also studied the dependence of selective pressure on the structural and functional properties of proteins. We found that in our dataset the selection pressure against deleterious SNPs depends on the molecular function of the protein, although it is insensitive to several other protein features considered. The strongest selective pressure was detected for proteins involved in transcription regulation.

2,276 citations

Journal ArticleDOI
TL;DR: A method based on support vector machines (SVMs) that starting from the protein sequence information can predict whether a new phenotype derived from a nsSNP can be related to a genetic disease in humans is developed.
Abstract: Motivation: Human single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in human population. One of the most important goals of SNP projects is to understand which human genotype variations are related to Mendelian and complex diseases. Great interest is focused on non-synonymous coding SNPs (nsSNPs) that are responsible of protein single point mutation. nsSNPs can be neutral or disease associated. It is known that the mutation of only one residue in a protein sequence can be related to a number of pathological conditions of dramatic social impact such as Altzheimer's, Parkinson's and Creutzfeldt-Jakob's diseases. The quality and completeness of presently available SNPs databases allows the application of machine learning techniques to predict the insurgence of human diseases due to single point protein mutation starting from the protein sequence. Results: In this paper, we develop a method based on support vector machines (SVMs) that starting from the protein sequence information can predict whether a new phenotype derived from a nsSNP can be related to a genetic disease in humans. Using a dataset of 21 185 single point mutations, 61% of which are disease-related, out of 3587 proteins, we show that our predictor can reach more than 74% accuracy in the specific task of predicting whether a single point mutation can be disease related or not. Our method, although based on less information, outperforms other web-available predictors implementing different approaches. Availability: A beta version of the web tool is available at http://gpcr.biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi Contact: casadio@alma.unibo.it

739 citations

Related Papers (5)
18 Aug 2016-Nature
Monkol Lek, Konrad J. Karczewski, Konrad J. Karczewski, Eric Vallabh Minikel, Eric Vallabh Minikel, Kaitlin E. Samocha, Eric Banks, Timothy Fennell, Anne H. O’Donnell-Luria, Anne H. O’Donnell-Luria, Anne H. O’Donnell-Luria, James S. Ware, Andrew J. Hill, Andrew J. Hill, Andrew J. Hill, Beryl B. Cummings, Beryl B. Cummings, Taru Tukiainen, Taru Tukiainen, Daniel P. Birnbaum, Jack A. Kosmicki, Laramie E. Duncan, Laramie E. Duncan, Karol Estrada, Karol Estrada, Fengmei Zhao, Fengmei Zhao, James Zou, Emma Pierce-Hoffman, Emma Pierce-Hoffman, Joanne Berghout, David Neil Cooper, Nicole A. Deflaux, Mark A. DePristo, Ron Do, Jason Flannick, Jason Flannick, Menachem Fromer, Laura D. Gauthier, Jackie Goldstein, Jackie Goldstein, Namrata Gupta, Daniel P. Howrigan, Daniel P. Howrigan, Adam Kiezun, Mitja I. Kurki, Mitja I. Kurki, Ami Levy Moonshine, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso, Gina M. Peloso, Ryan Poplin, Manuel A. Rivas, Valentin Ruano-Rubio, Samuel A. Rose, Douglas M. Ruderfer, Khalid Shakir, Peter D. Stenson, Christine Stevens, Brett Thomas, Brett Thomas, Grace Tiao, María Teresa Tusié-Luna, Ben Weisburd, Hong-Hee Won, Dongmei Yu, David Altshuler, David Altshuler, Diego Ardissino, Michael Boehnke, John Danesh, Stacey Donnelly, Roberto Elosua, Jose C. Florez, Jose C. Florez, Stacey Gabriel, Gad Getz, Gad Getz, Stephen J. Glatt, Christina M. Hultman, Sekar Kathiresan, Markku Laakso, Steven A. McCarroll, Steven A. McCarroll, Mark I. McCarthy, Mark I. McCarthy, Dermot P.B. McGovern, Ruth McPherson, Benjamin M. Neale, Benjamin M. Neale, Aarno Palotie, Shaun Purcell, Danish Saleheen, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan, Patrick F. Sullivan, Jaakko Tuomilehto, Ming T. Tsuang, Hugh Watkins, Hugh Watkins, James G. Wilson, Mark J. Daly, Mark J. Daly, Daniel G. MacArthur, Daniel G. MacArthur 
Trending Questions (1)
Do alpha missense mutations have a negative impact on plant growth and development?

The provided information does not mention anything about the impact of alpha missense mutations on plant growth and development.