scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Mixture of trans-Galactooligosaccharides Reduces Markers of Metabolic Syndrome and Modulates the Fecal Microbiota and Immune Function of Overweight Adults

01 Mar 2013-Journal of Nutrition (American Society for Nutrition)-Vol. 143, Iss: 3, pp 324-331
TL;DR: Administration of B-GOS to overweight adults resulted in positive effects on the composition of the gut microbiota, the immune response, and insulin, TC, and TG concentrations, which may be a useful candidate for the enhancement of gastrointestinal health, immune function, and the reduction of metabolic syndrome risk factors in overweight adults.
Abstract: Metabolic syndrome is a set of disorders that increases the risk of developing cardiovascular disease. The gut microbiota is altered toward a less beneficial composition in overweight adults and this change can be accompanied by inflammation. Prebiotics such as galactooligosaccharides can positively modify the gut microbiota and immune system; some may also reduce blood lipids. We assessed the effect of a galactooligosaccharide mixture [Bi 2 muno (B-GOS)] on markers of metabolic syndrome, gut microbiota, and immune function in 45 overweight adults with $3 risk factors associated with metabolic syndrome in a double-blind, randomized, placebo (maltodextrin)-controlled, crossover study (with a 4-wk wash-out period between interventions). Whole blood, saliva, feces, and anthropometric measurements were taken at the beginning, wk 6, and end of each 12-wk intervention period. Predominant groups of fecal bacteria were quantified and full blood count, markers of inflammation and lipidmetabolism, insulin, and glucose were measured. B-GOS increased the number of fecal bifidobacteria at the expense of less desirable groups of bacteria. Increases in fecal secretory IgA and decreases in fecal calprotectin, plasma C-reactive protein, insulin, total cholesterol (TC), TG, and the TC:HDL cholesterol ratio were also observed. Administration of B-GOS to overweight adults resulted in positive effects on the composition of the gut microbiota, the immune response, and insulin, TC, and TG concentrations. B-GOS may be a useful candidate for the enhancement of gastrointestinal health, immune function, and the reduction of metabolic syndrome risk factors in overweight adults. J. Nutr. doi: 10.3945/jn.112.166132.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This analysis updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the numberof human cells, and their total mass is about 0.2 kg.
Abstract: Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.

3,166 citations


Cites background from "A Mixture of trans-Galactooligosacc..."

  • ...(1) No significant change in bacteria concentrations in relation to high variation for the reference man [40,43]....

    [...]

Journal ArticleDOI
TL;DR: The goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category.
Abstract: With the continued interest in the role of the gut microbiota in health, attention has now turned to how to harness the microbiota for the benefit of the host. This Consensus Statement outlines the definition and scope of the term 'prebiotic' as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in December 2016. In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.

2,863 citations

Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
TL;DR: This Review discusses the effects of three SCFA on energy homeostasis and metabolism, as well as how these SCFA can beneficially modulate adipose tissue, skeletal muscle and liver tissue function and the increasing evidence for a potential role of SCFA as metabolic targets to prevent and counteract obesity.
Abstract: The connection between the gut microbiota and the aetiology of obesity and cardiometabolic disorders is increasingly being recognized by clinicians. Our gut microbiota might affect the cardiometabolic phenotype by fermenting indigestible dietary components and thereby producing short-chain fatty acids (SCFA). These SCFA are not only of importance in gut health and as signalling molecules, but might also enter the systemic circulation and directly affect metabolism or the function of peripheral tissues. In this Review, we discuss the effects of three SCFA (acetate, propionate and butyrate) on energy homeostasis and metabolism, as well as how these SCFA can beneficially modulate adipose tissue, skeletal muscle and liver tissue function. As a result, these SCFA contribute to improved glucose homeostasis and insulin sensitivity. Furthermore, we also summarize the increasing evidence for a potential role of SCFA as metabolic targets to prevent and counteract obesity and its associated disorders in glucose metabolism and insulin resistance. However, most data are derived from animal and in vitro studies, and consequently the importance of SCFA and differential SCFA availability in human energy and substrate metabolism remains to be fully established. Well-controlled human intervention studies investigating the role of SCFA on cardiometabolic health are, therefore, eagerly awaited.

1,333 citations

Journal ArticleDOI
TL;DR: Current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease is discussed, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation.
Abstract: The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

941 citations

References
More filters
Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Abstract: The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.

10,126 citations


"A Mixture of trans-Galactooligosacc..." refers background in this paper

  • ...It seems that the ‘‘obese microbiota’’ can modulate host energy homeostasis and adiposity through a number of different mechanisms, including harvesting energy from food (7), LPSinduced chronic inflammation (8), modulation of tissue fatty acid composition (9), and gut-derived peptide secretion (10)....

    [...]

Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations


"A Mixture of trans-Galactooligosacc..." refers background in this paper

  • ...Excessive weight and diabetes are associated with a poor inflammatory status, leading to impaired insulin action and adipose-tissue plasticity (3)....

    [...]

  • ...Regardless of an individual s weight, the chronic low-grade inflammatory condition that accompanies metabolic syndrome has been implicated as a major factor in both the onset of the syndrome and its associated pathophysiological consequences (3)....

    [...]

Journal ArticleDOI
TL;DR: By combining the rationale of pro- and prebiotics, the concept of synbiotics is proposed to characterize some colonic foods with interesting nutritional properties that make these compounds candidates for classification as health-enhancing functional food ingredients.
Abstract: Because the human gut microbiota can play a major role in host health, there is currently some interest in the manipulation of the composition of the gut flora towards a potentially more remedial community. Attempts have been made to increase bacterial groups such as Bifidobacterium and Lactobacillus that are perceived as exerting health-promoting properties. Probiotics, defined as microbial food supplements that beneficially affect the host by improving its intestinal microbial balance, have been used to change the composition of colonic microbiota. However, such changes may be transient, and the implantation of exogenous bacteria therefore becomes limited. In contrast, prebiotics are nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacterial species already resident in the colon, and thus attempt to improve host health. Intake of prebiotics can significantly modulate the colonic microbiota by increasing the number of specific bacteria and thus changing the composition of the microbiota. Nondigestible oligosaccharides in general, and fructooligosaccharides in particular, are prebiotics. They have been shown to stimulate the growth of endogenous bifidobacteria, which, after a short feeding period, become predominant in human feces. Moreover, these prebiotics modulate lipid metabolism, most likely via fermentation products. By combining the rationale of pro- and prebiotics, the concept of synbiotics is proposed to characterize some colonic foods with interesting nutritional properties that make these compounds candidates for classification as health-enhancing functional food ingredients.

7,232 citations


"A Mixture of trans-Galactooligosacc..." refers background in this paper

  • ...Modulation of the gut microbiota by dietary means is the basis for the probiotic (11) and prebiotic (12) concepts....

    [...]

Journal ArticleDOI
TL;DR: The pathophysiology seems to be largely attributable to insulin resistance with excessive flux of fatty acids implicated, and a proinflammatory state probably contributes to the metabolic syndrome.

5,810 citations

Journal ArticleDOI
TL;DR: Analysis of the microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet, indicates that obesity affects the diversity of the gut microbiota and suggests that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
Abstract: We have analyzed 5,088 bacterial 16S rRNA gene sequences from the distal intestinal (cecal) microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet. Although the majority of mouse gut species are unique, the mouse and human microbiota(s) are similar at the division (superkingdom) level, with Firmicutes and Bacteroidetes dominating. Microbial-community composition is inherited from mothers. However, compared with lean mice and regardless of kinship, ob/ob animals have a 50% reduction in the abundance of Bacteroidetes and a proportional increase in Firmicutes. These changes, which are division-wide, indicate that, in this model, obesity affects the diversity of the gut microbiota and suggest that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.

5,365 citations

Related Papers (5)