scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A model-based rear-end collision avoidance algorithm for heavy commercial road vehicles

01 Apr 2015-Vol. 229, Iss: 5, pp 550-562
TL;DR: In this article, a model-based longitudinal collision avoidance algorithm is developed for heavy commercial road vehi cies for rear-end collisions on roadways, which is one of the most frequent accidents occurring in roadways.
Abstract: A rear-end collision is one of the most frequent accidents occurring on roadways. In this paper, a model-based longitudinal collision avoidance algorithm is developed for heavy commercial road vehi...
Citations
More filters
01 Jan 2013
TL;DR: In this article, a braking system for pneumatically braked heavy goods vehicles is introduced, which uses a wheel slip regulator based on sliding mode control to reduce stopping distances on smooth and rough, high friction (μ"="0.9") surfaces by 10% and 27% respectively.
Abstract: Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3–4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction (μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction (μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system.

24 citations

Journal ArticleDOI
TL;DR: In this paper, a collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort.
Abstract: An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Ha...

17 citations


Cites background or methods from "A model-based rear-end collision av..."

  • ...where a1 and a2 are constants that can be experimentally determined, p̃b(t) is the brake chamber gauge pressure, given by p̃b(t) = pb(t) − patm, patm is the atmospheric pressure and u(t − τ) is the voltage input to the EPR with τ being the time delay in the system.[37] A relation between the brake torque and the brake chamber pressure was given by Limpert [40]....

    [...]

  • ...Most of the CAAs discussed in the literature have been developed based on linear control design techniques.[37] Similar approaches have been followed for vehicle longitudinal control....

    [...]

  • ...The performance of the SMC was compared with the CAA developed using a full state feedback (FSF) controller.[37] A similar approach has been followed by Gietelink et al....

    [...]

  • ...The relation between the input voltage to the EPR and the steady-state brake chamber pressurewas obtained from experiments andwas found to be linear.[37] For developing the CAA, the brake chamber pressure transients was modelled as a linear first-order dynamic system with a time delay....

    [...]

Journal ArticleDOI
01 Feb 2017
TL;DR: In this paper, an active roll control system for an articulated vehicle carrying a liquid is used by employing two different control methods, i.e., 16-16 and 16-15 degrees of freedom.
Abstract: In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-...

13 citations

Journal ArticleDOI
01 Sep 2019
TL;DR: This study proposes an artificial neural network–based approach to predict pushrod stroke based on measurement of brake chamber pressure and tested the efficacy of the proposed prediction scheme over the entire range of brake operating conditions.
Abstract: In heavy commercial road vehicles, the air brake system is a critical vehicle safety system whose performance degradation increases the risk of accidents and hence requires periodic inspection and ...

5 citations


Additional excerpts

  • ...An expression for the brake force produced by an S-cam brake was given by Limbert.14 Rajaram et al.15 modified this equation as FB ¼ hB PBC PCð ÞaBClSArDBF 2rTrC ð2Þ where hB is the efficiency of the brake system; PBC is the brake chamber pressure; PC is the contact pressure, which is the pressure at which the brake drum and the brake shoe come in contact with each other; aBC is the brake chamber area; lSA is the length of slack adjuster; rD is the brake drum inner radius; rT is the rolling radius of tire; rC is the effective radius of S-cam; and BF is the brake factor, which is the ratio of the brake force generated on the brake drum to the actuation force on the brake shoe....

    [...]

  • ...Rajaram et al.(15) modified this equation as...

    [...]

References
More filters
Book
13 Dec 1978
TL;DR: In this article, the authors present an approach to the prediction of normal pressure distribution under a track and a simplified method for analysis of tracked vehicle performance, based on the Cone Index.
Abstract: Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. Conversion Factors. Nomenclature. Introduction. 1. MECHANICS OF PNEUMATIC TIRES. 1.1 Tire Forces and Moments. 1.2 Rolling Resistance of Tires. 1.3 Tractive (Braking) Effort and Longitudinal Slip (Skid). 1.4 Cornering Properties of Tires. 1.4.1 Slip Angle and Cornering Force. 1.4.2 Slip Angle and Aligning Torque. 1.4.3 Camber and Camber Thrust. 1.4.4 Characterization of Cornering Behavior of. Tires. 1.5 Performance of Tires on Wet Surfaces. 1.6 Ride Properties of Tires. References. Problems. 2. MECHANICS OF VEHICLE-TERRAIN INTERACTION--TERRAMECHANICS. 2.1 Distribution of Stresses in the Terrain Under Vehicular Loads. 2.2 Applications of the Theory of Plastic Equilibrium to the Mechanics of Vehicle--Terrain Interaction. 2.3 Empirical Methods for Predicting Off-Road Vehicle Performance. 2.3.1 Empirical Methods Based on the Cone Index. 2.3.2 Empirical Methods Based on the Mean Maximum Pressure. 2.4 Measurement and Characterization of Terrain Response. 2.4.1 Characterization of Pressure-Sinkage Relationship. 2.4.2 Characterization of the Response to Repetitive Loading. 2.4.3 Characterization of the Shear Stress-Shear Displacement Relationship. 2.5 A Simplified Method for Analysis of Tracked Vehicle Performance. 2.5.1 Motion Resistance of a Track. 2.5.2 Tractive Effort and Slip of a Track. 2.6 A Computer-Aided Method for Evaluating the Performance of Vehicles with Flexible Tracks. 2.6.1 Approach to the Prediction of Normal Pressure Distribution under a Track. 2.6.2 Approach to the Prediction of Shear Stress Distribution under a Track. 2.6.3 Prediction of Motion Resistance and Drawbar Pull as Functions of Track Slip. 2.6.4 Experimental Substantiation. 2.6.5 Applications to Parametric Analysis and Design Optimization. 2.7 A Computer-Aided Method for Evaluating the Performance of Vehicles with Long-Pitch Link Tracks. 2.7.1 Basic Approach. 2.7.2 Experimental Substantiation. 2.7.3 Applications to Parametric Analysis and Design Optimization. 2.8 Methods for Parametric Analysis of Wheeled Vehicle Performance. 2.8.1 Motion Resistance of a Rigid Wheel. 2.8.2 Motion Resistance of a Pneumatic Tire. 2.8.3 Tractive Effort and Slip of a Wheel. 2.9 A Computer-Aided Method for Evaluating the Performance of Off-Road Wheeled Vehicles. 2.9.1 Basic Approach. 2.9.2 Experimental Substantiation. 2.9.3 Applications to Parametric Analysis. 2.10 Finite Element and Discrete Element Methods for the Study of Vehicle-Terrain Interaction. 2.10.1 The Finite Element Method. 2.10.2 The Discrete (Distinct) Element Method. References. Problems. 3. PERFORMANCE CHARACTERISTICS OF ROAD VEHICLES. 3.1 Equation of Motion and Maximum Tractive Effort. 3.2 Aerodynamic Forces and Moments. 3.3 Vehicle Power Plant and Transmission Characteristics. 3.3.1 Internal Combustion Engines. 3.3.2 Electric Drives. 3.3.3 Hybrid Drives. 3.3.4 Fuel Cells. 3.3.5 Transmission Characteristics. 3.4 Vehicle Power Plant and Transmission Characteristics. 3.4.1 Power Plant Characteristics. 3.4.2 Transmission Characteristics. 3.5 Prediction of Vehicle Performance. 3.5.1 Acceleration Time and Distance. 3.5.2 Gradability. 3.6 Operating Fuel Economy. 3.7 Engine and Transmission Matching. 3.8 Braking Performance. 3.8.1 Braking Characteristics of a Two-Axle. Vehicle. 3.8.2 Braking Efficiency and Stopping Distance. 3.8.3 Braking Characteristics of a Tractor-Semitrailer. 3.8.4 Antilock Brake Systems. 3.8.5 Traction Control Systems. References. Problems. 4. PERFORMANCE CHARACTERISTICS OF OFF-ROAD VEHICLES. 4.1 Drawbar Performance. 4.1.1 Drawbar Pull and Drawbar Power. 4.1.2 Tractive Efficiency. 4.1.3 Four Wheel Drive. 4.1.5 Coefficient of Traction. 4.1.4 Weight-to-Power Ratio for Off-Road Vehicles. 4.2 Fuel Economy of Cross-Country Operations. 4.3 Transport Productivity and Transport Efficiency. 4.4 Mobility Map and Mobility Profile. 4.5 Selection of Vehicle Configurations for Off-Road Operations. References. Problems. 5. HANDLING CHARACTERISTICS OF ROAD VEHICLES. 5.1 Steering Geometry. 5.2 Steady-State Handling Characteristics of a Two-Axle Vehicle. 5.2.1 Neutral Steer. 5.2.2 Understeer. 5.2.3 Oversteer. 5.3 Steady-State Response to Steering Input. 5.3.1 Yaw Velocity Response. 5.3.2 Lateral Acceleration Response. 5.3.3 Curvature Response. 5.4 Testing of Handling Characteristics. 5.4.1 Constant Radius Test. 5.4.2 Constant Speed Test. 5.4.3 Constant Steer Angle Test. 5.5 Transient Response Characteristics. 5.6 Directional Stability. 5.6.1 Criteria for Directional Stability. 5.6.2 Vehicle Stability Control. 5.7 Steady-State Handling Characteristics of a Tractor-Semitrailer. 5.8 Simulation Models for the Directional Behavior of Articulated Road Vehicles. References. Problems. 6. STEERING OF TRACKED VEHICLES. 6.1 Simplified Analysis of the Kinetics of Skid-Steering. 6.2 Kinematics of Skid-Steering. 6.3 Skid-Steering at High Speeds. 6.4 A General Theory for Skid-Steering on Firm Ground. 6.4.1 Shear Displacement on the Track-Ground Interface. 6.4.2 Kinetics in a Steady-State Turning Maneuver. 6.4.3 Experimental Substantiation. 6.4.4 Coefficient of Lateral Resistance. 6.5 Power Consumption of Skid-Steering. 6.6 Steering Mechanisms for Tracked Vehicles. 6.6.1 Clutch/Brake Steering System. 6.6.2 Controlled Differential Steering System. 6.6.3 Planetary Gear Steering System. 6.7 Articulated Steering. References. Problems. 7. VEHICLE RIDE CHARACTERISTICS. 7.1 Human Response to Vibration. 7.1.1 International Standard ISO 2631-1:1985. 7.1.2 International Standard ISO 2631-1:1997. 7.2 Vehicle Ride Models. 7.2.1 Two-Degree-of-Freedom Vehicle Model for Sprung and Unsprung Mass. 7.2.2 Numerical Methods for Determining the Response of a Quarter-Car Model to Irregular Surface Profile Excitation. 7.2.3 Two-Degree-of-Freedom Vehicle Model for Pitch and Bounce. 7.3 Introduction to Random Vibration. 7.3.1 Surface Elevation Profile as a Random Function. 7.3.2 Frequency Response Function. 7.3.3 Evaluation of Vehicle Vibration in Relation to the Ride Comfort Criterion. 7.4 Active and Semi-Active Suspensions. References. Problems. 8. INTRODUCTION TO AIR-CUSHION VEHICLES. 8.1 Air-Cushion Systems and Their Performance. 8.1.1 Plenum Chamber. 8.1.2 Peripheral Jet. 8.2 Resistance of Air-Cushion Vehicles. 8.3 Suspension Characteristics of Air-Cushion Systems. 8.3.1 Heave (or Bounce) Stiffness. 8.3.2 Roll Stiffness. 8.4 Directional Control of Air-Cushion Vehicles. References. Problems. Index.

2,930 citations

Proceedings ArticleDOI
14 Jun 2004
TL;DR: A vision based forward collision warning system for highway safety that computes time to contact (TTC) and possible collision course directly from the size and position of the vehicles in the image - which are the natural measurements for a vision based system - without having to compute a 3D representation of the scene.
Abstract: The large number of rear end collisions due to driver inattention has been identified as a major automotive safety issue. Even a short advance warning can significantly reduce the number and severity of the collisions. This paper describes a vision based forward collision warning (FCW) system for highway safety. The algorithm described in this paper computes time to contact (TTC) and possible collision course directly from the size and position of the vehicles in the image - which are the natural measurements for a vision based system - without having to compute a 3D representation of the scene. The use of a single low cost image sensor results in an affordable system which is simple to install. The system has been implemented on real-time hardware and has been test driven on highways. Collision avoidance tests have also been performed on test tracks.

306 citations


"A model-based rear-end collision av..." refers methods in this paper

  • ...Considering the brake force distribution between the wheels given by equation (6), the brake force Fbfreq required from each of the front wheels and the brake force Fbrreq required from each of the rear wheels are calculated as...

    [...]

  • ...From equations (6) and (7), the values of Kbf and Kbr were computed....

    [...]

Journal ArticleDOI
TL;DR: In this article, a full-range adaptive cruise control (ACC) system with collision avoidance (CA) is proposed to improve drivers' comfort during normal, safe-driving situations and to completely avoid rear-end collision in vehicle-following situations.

276 citations

Proceedings ArticleDOI
TL;DR: In this article, the analysis of a rear-end collision warning/avoidance (CW/CA) system algorithm is presented, which is designed to meet several criteria: 1. System warnings should result in a minimum load on driver attention. 2. Automatic control of the brakes should not interfere with normal driving operation.
Abstract: The analysis of a rear-end collision warning/ avoidance (CW/CA) system algorithm will be presented. The system is designed to meet several criteria: 1. System warnings should result in a minimum load on driver attention. 2. Automatic control of the brakes should not interfere with normal driving operation.

240 citations


"A model-based rear-end collision av..." refers methods in this paper

  • ...The pressure in the brake chamber depends on the input voltage to the EPR and it is calculated using equations (8) and (20)....

    [...]

Journal ArticleDOI
TL;DR: The proposed control systems guarantee smooth vehicle following even when the leading vehicle exhibits erratic speed behavior, and are designed and tested using a validated nonlinear vehicle model first and then actual vehicles.

223 citations