scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A model of degassing for Stromboli volcano

TL;DR: In this article, the authors used the MultiGAS technique to provide the best documented record of gas plume discharges from Stromboli volcano to date, and showed that Strombolian's gases are dominated by H2O (48−98−mol); mean, 80%), and by CO2 (2−50−mol%; mean, 17%) and SO2 (0.2−14−mol; mean, 3%).
Abstract: A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas measurements in tandem with the melt inclusion record of pre-eruptive dissolved volatile abundances, and with the results of an equilibrium saturation model. Comparison between natural (volcanic gas and melt inclusion) and modelled compositions is used to propose a degassing mechanism for Stromboli volcano, which suggests surface gas discharges are mixtures of CO2-rich gas bubbles supplied from the deep (> 4 km) plumbing system, and gases released from degassing of dissolved volatiles in the magma filling the upper conduits. The proposed mixing mechanism offers a viable and general model to account for composition of gas discharges at all volcanoes for which petrologic evidence of CO2 fluxing exists. A combined volcanic gas-melt inclusion-modelling approach, as used in this paper, provides key constraints on degassing processes, and should thus be pursued further.

Summary (4 min read)

1. Introduction

  • This, combined with recent developments in H2O–CO2 micro-analysis in silicate materials and the refinement of thermodynamic saturation codes, now opens the way to more detailed inspection of degassing processes.
  • Here, the authors report on the first MultiGAS measurements including H2O of the volcanic gas plume of Stromboli, an active basaltic volcano in Southern Italy (Fig. 1).
  • This combined volcanic gas-melt inclusion-thermodynamic approach finally leads to thorough characterization of degassing processes at Stromboli volcano, with general implications for all basaltic volcanism.

2. Stromboli volcano

  • The persistent Strombolian activity, for which the volcano is famous, began after the 3rd–7th centuries AD, and since then has continued without significant breaks or variations (Rosi et al., 2000).
  • Explosive activity is associated with a continuous “passive” streaming of gas from the crater area and with active degassing (“puffing”) originating from discrete small gas bursts, every 1–2 s. During the lava effusion, a paroxysmal eruption also occurred (on 15 March), which erupted a significant amount of basaltic pumice (Landi et al., 2009).
  • During July–December 2008 (the period over which the volcanic gas measurements are reported here), the volcano showed its typical activity, with rhythmic Strombolian explosions of variable energy at an average frequency of 10–15 events/h (see open-file reports at www.ct.ingv.it).
  • On September 7, December 6 and 17, three slightly more energetic events occurred.

3. Technique

  • The volcanic gas measurements reported here were carried out from July to December 2008, using the permanent MultiGAS installed on the summit of Stromboli by Istituto Nazionale di Geofisica and Vulcanologia (Sezione di Palermo).
  • Signals from both sensors were captured every 9 s from a data-logger board, which also enabled data logging and storage.
  • Because the instrument is located ∼150 m S–SE of the crater terrace (Fig. 1), plume gas sensing was only possible when moderate to strong winds from the northern quadrants blew on the island.
  • In contrast when the plume was gently lofting, rising vertically, or being dispersed north, the MultiGAS consistently detected the typical H2O (13,000– 18,000 ppm), CO2 (∼380 ppm), and SO2 (b0.1 ppm) concentrations in background air, and the cycle was considered null (e.g., no ratio was calculated from the data).

4.1. Raw data and calculation of volcanic gas composition

  • Fig. 2 shows an example of 1-cycle acquisition from the permanent MultiGAS at Stromboli.
  • From the raw plume concentration data (in ppm), the volcanic gas plume H2O/SO2 and H2O/CO2 ratios were derived by calculating the gradients of the best-fit regression lines in H2O vs. SO2 and H2O vs. CO2 scatter plots (Fig. 3), as previously reported for Etna (Shinohara et al., 2008).
  • This assumes that contributions from undetected species (e.g., H2, H2S, HCl) are relatively minor.
  • Visual observations and cross correlations of their dataset with seismic and thermal signals (available at http://www.ct.ingv.it) indicated that such short-term variations (generally lasting less than 2 min) systematically occurred soon after individual Strombolian bursts.
  • When the wind was particularly strong and explosive activity high, this syn-explosive gas phase, known to be compositionally distinct from the quiescent plume (Burton et al., 2007b), eventually reached the instrument (a few seconds after the explosion) before being diluted (and homogenised) within the bulk plume.

4.2. The H2O–CO2–SO2 composition of Stromboli's plume

  • As such, they resemble quite closely the typical composition of volcanic gases from arc-settings, though sharing with nearby Etna (Shinohara et al., 2008) a characteristic of CO2-enrichment (most volcanic gases from arc basaltic volcanoes have N90% H2O; Shinohara, 2008).
  • The most striking feature of the dataset is the large spread of plume compositions observed in only 6 months of observations.

5. Discussion

  • The striking range of volcanic gas compositions at Stromboli suggest dynamic magma degassing processes at this open-vent volcano.
  • This deep source area also supported the idea of a separate ascent of gas and melt in the shallow (less than 2.7 km) plumbing system, as also proposed for other basaltic systems (Edmonds and Gerlach, 2007).
  • The authors measurements here extend further the conclusions of Burton et al. (2007b): the temporal variability of the composition of the bulk plume requires the existence of a complex degassing regime in which a separate gas ascent plays a key role (Pichavant et al., 2009).
  • Visual observations suggest that the bulk Stromboli's plume is essentially contributed by both quiescent gas release from the magma ponding at the crater terrace' open vents, and by small bursts of over-pressurised gas pockets at the magma-free atmosphere (Harris and Ripepe, 2007).
  • Finally, comparison between modelled and observed volcanic gas compositions (Section 5.3) offers new clues on volcanic degassing processes, and on the structure of the magmatic plumbing system of Stromboli.

5.1. Melt inclusion record of magma ascent and degassing

  • There is consensus (Bertagnini et al., 2008) that two magma types are involved in the present-day Stromboli's activity.
  • The persistent behaviour of the volcano implies that a supply of deeply derived magmas must occur not only prior to/during a paroxysm, but also during the normal Strombolian activity (yet at a slower rate).
  • This has three main implications and consequences: (i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents N5 wt. % (Métrich et al., 2010).
  • The contrasting compositions, volatile contents, and depth of storage of LP and HP magmas (Table 2) imply that the magmatic gas phases in equilibrium with (and separated from) these two magma types are inevitably different, as calculated below.

5.2. Numerical modelling

  • Volatile contents in MIs (Table 2) are used here to initialize model calculations of volatile partitioning between the magmatic gas phase and the melt, which the authors performed using the code described in Moretti and Papale (2004).
  • The authors utilised the code to perform two sets of complementary calculations.
  • LP runs were initialised with the input parameters summarised in Table 2.
  • Themodel results are critically dependent on the choice of the total (exsolved+dissolved) magma CO2 content: four sets of LP runs were thus carried out at different CO2 contents (0.2, 2, 5 or 20%, respectively), to account for the presence of a non-negligible (but poorly constrained) fraction of CO2-rich gas bubbles at reservoir conditions.
  • The highest entrapment pressure (∼100 MPa) derived from volatile contents in MIs (Table 2) was taken as the starting pressure of their simulations, followed by step-wise pressure decrease in first closed-system to then opensystem conditions.

5.2.1. Model results, and comparison with natural data

  • The outputs of model calculations are, for each run and at each pressure, the equilibrium volatile compositions of coexisting melt and vapour phases.
  • The authors model results are qualitatively similar to the pressure-related model degassing trends presented by Allard (2010) (see his Fig. 3), which were yet based on the use of different saturation model and assumptions.
  • As such, the volatile compositions of glass embayments may reflect gas-melt interactions within the CO2-rich intermediate (2–4 km deep) magma ponding zone (cfr. 5.1).
  • Modelled dissolved sulphur contents (Fig. 7b) are also consistent with MI record, and again support a mechanism of progressive increase of the CO2TOT/H2OTOT ratio from trends 1 to 4.
  • The authors note however that some of the richest CO2 volcanic gas data are consistent with model gas compositions calculated at P=100–120 MPa in the LP model run 1 (CO2TOT=0.2 wt.%; Fig. 8).

5.3. A model of degassing for Stromboli volcano

  • The authors model calculations above provide a quantitative background for interpreting the source processes controlling the time-changing composition of Stromboli's volcanic gases.
  • In the most extreme conditions, the CO2-rich gas bubbles may be thought to be sourced by the deep (7–11 km deep) LP magma storage zone; though partial gas-melt reequilibration at shallower depths (and particularly upon gas bubble accumulation within — before leakage from — the intermediate 2– 4 km deep magma ponding zone) cannot be ruled out.
  • Secondly, there is supporting evidence at Stromboli for that continuous magma convection takes place within the shallow (b1 km) dyke system (Harris and Stevenson, 1997).
  • The shallow convective overturning of the HPmagma obviously gives rise to a second source of volatiles: degassing of dissolved volatiles in the ascending HP magma will produce gas bubbles which pressure-dependent compositional evolution is best described by curves 5 and 6 in Fig.

6. Conclusions

  • The MultiGAS volcanic gas observations presented here show that, in spite of the relatively uniform activity and petrology of erupted solid materials, Stromboli shares with other basaltic volcanoes an exceptional variability in gas compositions.
  • The mechanisms controlling such time-changing nature of Stromboli's gas emissions have been explored by combining gas measurements with the MI record of volatile abundance in magmas, and by contrasting natural compositions with model results derived with an equilibrium saturation code.
  • From this, the authors propose that the compositional features of Stromboli's quiescent and syn-explosive gas emissions result from themixing of gases persistently sourced by (i) degassing of dissolved volatiles in the porphyric magma filling the upper (b1 km) dyke-conduit system; and (ii) CO2-rich gas bubbles, originated at depth (at depths N4 km, or PN100 MPa) in the plumbing system.
  • The proposed mixing mechanism is constrained by independent petrologic and model data, and it is geologically straightforward since it only requires a persistent but time-modulated source of deep gas bubbles; this however does not exclude that additional control mechanisms on volcanic gas composition might be at work.
  • The authors conclude however that, since magma fluxing by a free CO2-rich vapour phase is a recurrent process, the proposed degassing mechanism is probably a key to interpret volcanic gas observations at many basaltic volcanoes.

Did you find this useful? Give us your feedback

Figures (10)
Citations
More filters
Journal ArticleDOI
TL;DR: The role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth as discussed by the authors, but the uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle.
Abstract: Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Berner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth. Notwithstanding this importance, the flux of CO2 from the Earth is poorly constrained. The uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle. Notwithstanding the uncertainties in our understanding of CO2 degassing from Earth, it is clear that these natural emissions were recently dwarfed by anthropogenic emissions, which have rapidly increased since industrialization began on a large scale in the 18th century, leading to a rapid increase in atmospheric CO2 concentrations. While atmospheric CO2 concentrations have varied between 190–280 ppm for the last 400,000 years (Zeebe and Caldeira 2008), human activity has produced a remarkable increase …

309 citations


Cites background from "A model of degassing for Stromboli ..."

  • ...Gas can stream through magma from depth to the surface (Wallace et al. 2005), as surmised to occur at Soufrière Hills volcano, Montserrat (Edmonds et al. 2010) and Stromboli volcano (Aiuppa et al. 2010)....

    [...]

Journal ArticleDOI
TL;DR: This paper reviewed the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment.
Abstract: Despite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (−II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2−, SO42− and SO32− in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., Metrich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment. ### Geodynamics and the geochemical behavior of sulfur The …

172 citations


Cites background from "A model of degassing for Stromboli ..."

  • ...An important development is that long-term installations (using Wi-Fi or cell-phone networks, or satellite telemetry) are beginning to provide valuable and near-real time insights into the relationships between surface emissions and magmatic processes (e.g., Aiuppa et al. 2007b, 2010)....

    [...]

  • ...2003, 2008), and volcanic gas emission data (Allard et al. 1994 ; Burton et al. 2007a ; Aiuppa et al. 2010; Allard 2010)....

    [...]

  • ...…whose plumbing system is constrained by both phase equilibria (Di Carlo et al. 2006; Pichavant et al. 2009), detailed melt inclusion work (Métrich et al. 2001; Bertagnini et al. 2003, 2008), and volcanic gas emission data (Allard et al. 1994; Burton et al. 2007a; Aiuppa et al. 2010; Allard 2010)....

    [...]

Journal ArticleDOI
TL;DR: In this article, an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H^C^O^S^Cl fluid under oxidized conditions (fO2 of 1·0^2· 4l og units above the Ni^NiO buffer).
Abstract: Magma degassing processes are commonly elucidated by studies of melt inclusions in erupted phenocrysts and measurements of gas discharge at volcanic vents, allied to experimentally constrained models of volatile solubility. Here we develop an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H^C^O^S^Cl fluid under oxidized conditions (fO2 of 1·0^2· 4l og units above the Ni^NiO buffer). Synthetic experimental starting materials were based on basaltic magmas erupted at the persistently degassing volcanoes of Stromboli (Italy) and Masaya (Nicaragua) with an initial volatile inventory matched to the most undegassed melt inclusions from each volcano. Experiments were run at 25^400 MPa under super-liquidus conditions (11508C). Run product glasses and starting materials were analysed by electron microprobe, secondary ion mass spectrometry, Fourier transform infrared spectroscopy, Karl-Fischer titration, Fe 2þ /Fe 3þ colorimetry and CS analyser. The composition of the exsolved vapour in each run was determined by mass balance. Our results show that H2O/ CO2 ratios increase systematically with decreasing pressure, whereas CO2/S ratios attain a maximum at pressures of 100^300 MPa. S is preferentially released over Cl at low pressures, leading to a sharp increase in vapour S/Cl ratios and a sharp drop in the S/Cl ratios of glasses. This accords with published measurements of volatile concentrations in melt inclusion and groundmass glasses at Stromboli (and Etna). Experiments with different S abundances show that the H2O and CO2 contents of the melt at fluid saturation are not affected. The CO2 solubility in experiments using both sets of starting materials is well matched to calculated solubilities using published models. Models consistently overestimate H2O solubilities for the Stromboli-like composition, leading to calculated vapour compositions that are more CO2-rich and calculated degassing trajectories that are more strongly curved than observed in experiments. The difference is less acute for the Masaya-like composition, emphasizing the important compositional dependence of solubility and melt^ vapour partitioning. Our novel experimental method can be readily extended to other bulk compositions.

148 citations


Cites background or methods or result from "A model of degassing for Stromboli ..."

  • ...…from https://academic.oup.com/petrology/article-abstract/52/9/1737/1437269/Experimental-Simulation-of-Closed-System-Degassing by guest on 16 September 2017 from the two volcanoes: Stromboli data are from Bertagnini et al. (2003) and Me¤ trich et al. (2010); Masaya data from Sadofsky et al. (2008)....

    [...]

  • ...At Stromboli, petrological studies show that a basaltic magma in equilibrium with a fluid phase in a deep-seated reservoir at 400MPa (Me¤ trich et al., 2001; Bertagnini et al., 2003; Pichavant et al., 2009) starts to degas during ascent. Under these conditions, according to our experimental results, fluids evolve from dominantly CO2-rich at 400MPa, to progressively more H2O-rich until 150MPa, and then become dramatically H2O-enriched at lower pressures. These results are consistent with experimental results obtained for golden pumices from Stromboli (Landi et al., 2004) equilibrated with an H2O^CO2 fluid phase (Pichavant et al., 2009). Burton et al. (2007a) and Aiuppa et al....

    [...]

  • ...1 experimental data for S and Cl with the melt inclusions from Stromboli (Me¤ trich et al., 2001, 2010; Bertagnini et al., 2003)....

    [...]

  • ...(2003) and Me¤ trich et al. (2010); Masaya data from Sadofsky et al. (2008). As no CO2 data for Masaya were presented by Sadofsky et al. (2008), we used the highest values ( 7000 ppm) reported by Atlas & Dixon (2006). For each volcano two mixtures were prepared with different initial sulphur contents to better investigate the behaviour of sulphur and its potential influence on the behaviour of other volatiles....

    [...]

  • ...1 experimental data for S and Cl with the melt inclusions from Stromboli (Me¤ trich et al., 2001, 2010; Bertagnini et al., 2003). In Fig. 12a and b, respectively, we plot S and Cl in melt inclusions against the calculated H2O^CO2 saturation pressure for the same melt inclusion using VolatileCalc [it would make relatively little difference if we calculated pressure from our experimental data or used Papale et al. (2006)]. Melt inclusions show a good match to the low-sulphur series of experiments (St8.1.A), showing little change in dissolved S and Cl from 400 to 200MPa, followed by a sharp decrease in S, but not Cl, at P5150MPa. The matrix glass analyses of Me¤ trich et al. (2001) plot at the low-pressure extremity of this trend....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors examined the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake.
Abstract: Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer).

126 citations


Additional excerpts

  • ...The first scenario is reminiscent of trends observed at open-conduit volcanoes such as Stromboli and Etna ( [Aiuppa et al., 2007], [Aiuppa et al., 2010] and [Shinohara et al., 2008]); in the Erebus case, the explosive gas composition can be manufactured with ~ 50 wt.% of the deep, almost CO2-pure,…...

    [...]

  • ...…P. Papale, H. Shinohara, M. Valenza Forecasting Etna eruptions by real-time observation of volcanic gas composition Geology, 35 (2007), pp. 1115–1118 Aiuppa et al., 2010 A. Aiuppa, A. Bertagnini, N. Métrich, R. Moretti, A. Di Muro, M. Liuzzo, G. Tamburello A degassing model for Stromboli volcano…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the global variations of volcanic arc CO 2 /S T gas ratios are reviewed and a subset of high-temperature (≥450°C) arc gases are selected to be used to infer the deep source of volatiles.
Abstract: Some 300–600 Tg of volatiles are globally vented each year by arc volcanism. Such arc gas emissions have contributed to past and present-day evolution of the Earth atmosphere and climate by recycling mineral-bound volatiles subducted along active slabs. Carbon dioxide (CO 2 ) and total sulphur (S T ) are, after water, the major components of volcanic arc gases. Understanding their relative abundances (e.g., the CO 2 /S T ratio) in arc volcanic gases is important to constrain origin and recycling efficiency of these volatiles along the subduction factory, and to better constrain the global arc volcanic CO 2 flux. Here, we review currently available information on global variations of volcanic arc CO 2 /S T gas ratios. We analyse a dataset of > 2000 published volcanic arc gas measurements that comprise (i) low-temperature hydrothermal gas emissions, in which S T is dominated by hydrothermal hydrogen sulphide (H 2 S), and (ii) high temperature “magmatic” gases rich in sulphur dioxide (SO 2 ). We show that the global CO 2 /S T population of hydrothermal gases is mainly controlled by S loss to hydrothermal fluids/rocks. We then select a subset of high-temperature (≥ 450 °C) arc gases which, being less affected by S hydrothermal loss, can be used to infer the “deep” source of volatiles. Using a subset of time-averaged high-T gas compositions for 56 arc volcanoes, we identify sizeable along-arc and inter-arc variations in the “magmatic” arc gas CO 2 /S T ratio, which we ascribe to distinct volatile origins in the magma generation/storage zone. In the attempt to resolve the slab vs. crustal contributions to arc gas budgets, we explore the global association between volcanic gas CO 2 /S T ratios and non-volatile (trace elements) tracers in arc magmas. For the first time in a global study, we find evidence for higher carbon output (CO 2 /S T ) in arcs where carbonate sediment subducts on the seafloor. Indeed, most arc volcanoes exhibit gas vs. trace element relationships that are explained by addition of slab-sediment melts ± fluids to the mantle wedge. We also identify a subset of CO 2 -rich arc volcanoes with unusually high CO 2 /S T ratios (Etna, Stromboli, Vulcano Island, Popocatepetl, Soufriere of St Vincent, Bromo and Merapi), which we interpret as the product of magma-limestone interactions in the upper crust. Evidence for this process comes from carbonate xenoliths and/or carbonate basement that characterise these volcanic systems. Although the mean global CO 2 /S T ratio of arc gas (~ 2.5) reflects a predominant source from subducted sediment, limestone-assimilation-derived C may account for a substantial (~ 19–32%) fraction of the present-day global arc budget, and may have contributed to elevated atmospheric CO 2 levels and warmer climate in Earth's past. Our global CO 2 /S T vs. trace element association paves the way to identifying the gas signature of volcanoes (or arc segments) for which gas information is currently missing, and so improve our current global volcanic arc CO 2 flux inventory.

113 citations

References
More filters
Journal ArticleDOI
TL;DR: Papale et al. as mentioned in this paper applied thermodynamic equilibrium between gaseous and liquid volatile components to model the volatile saturation surface in H 2 O−CO 2 -silicate melt systems.
Abstract: The volatile saturation surface in H 2 O–CO 2 –silicate melt systems is modeled by applying thermodynamic equilibrium between gaseous and liquid volatile components. The whole database of existing saturation data in the C–O–H–silicate liquid systems has allowed us to re-calibrate a previously developed fully multicomponent H 2 O–CO 2 saturation model [Papale, P., 1999. Modeling of the solubility of a two-component H 2 O + CO 2 fluid in silicate liquid. Am. Mineral., 84, 477–492]. The new database nearly doubles the previous one, greatly improving the performances of the whole model, which now adopts a significantly lower number of model parameters with respect to the previous calibration. The multicomponent H 2 O + CO 2 saturation model is fully non-ideal, the only assumption being that the excess Gibbs free energy of the silicate mixture can be represented by an expansion of first-order symmetric interaction terms. No a-priori assumption is made on the P – T dependence of the volatile–oxide interaction terms, meaning that no assumption is made on the partial molar volume and enthalpy of the dissolved volatiles. The whole treatment is evaluated by restrictive statistical algorithms, which confirm the model validity on an extended database. The model allows to investigate extensively the dependence of the complex volatile saturation surface on composition. In order to explore the non-linear behaviors implicit in the physics of the dissolution process, the model is employed in a series of calculations aimed at illustrating some of the compositional features of the volatile saturation surface in both one-component and two-component volatile conditions. The results show compositional-dependent minima and maxima, some of which are known from the experiments. Non-ideal behavior is enhanced in two-component fluid phase conditions and pressures above a few hundreds MPa, where calculated isobaric H 2 O–CO 2 saturation curves reveal the possible existence of a maximum in CO 2 saturation at non-zero H 2 O contents. Due to the compositional dependence of the volatile saturation surface, it is outlined the important role played by redox conditions, especially in iron-rich melt systems like basalts.

491 citations


"A model of degassing for Stromboli ..." refers background or methods in this paper

  • ...b A note of caution should be spent on the application of the H2O–CO2 model (Papale et al., 2006) on shoshonitic composition....

    [...]

  • ...Standard deviations of model binary interaction terms showmaximum values for iron oxides, because they encompass all uncertainties on fO2 conditions within the calibration dataset (Papale et al., 2006)....

    [...]

Journal ArticleDOI
TL;DR: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state as mentioned in this paper.
Abstract: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state. Experimental and analytical studies show that CO2 is much less soluble in silicate melts compared to H2O (e.g., Javoy and Pineau 1991; Dixon et al. 1995). As much as 90% of the initial CO2 dissolved in basaltic melts may be already degassed at crustal depths, whereas H2O remains dissolved because of its higher solubility such that H2O contents of basaltic magmas at crustal depths may reach a few percents. Most subduction-related basaltic magmas are rich in H2O (up to 6–8 wt%; Sisson and Grove 1993; Roggensack et al. 1997; Newman et al. 2000; Pichavant et al. 2002; Grove et al. 2005) compared to mid-ocean ridge basalts (<1 wt%; Sobolev and Chaussidon 1996; Fischer and Marty 2005; Wallace 2005). During magma movement towards the surface, exsolution of major volatile constituents (CO2, H2O) causes gas bubble nucleation, growth, and possible coalescence that exert a strong control on the dynamics of magma ascent and eruption (Anderson 1975; Sparks 1978; Tait et al. 1989). Gas bubbles have the ability to move faster than magma (Sparks 1978), particularly in low viscosity basaltic magmas. Bubble accumulation, coalescence and foam collapse give rise to differential transfer of gas slugs and periodic gas bursting (Strombolian activity; Jaupart and Vergniolle 1988, 1989) or periodic lava fountains (Vergniolle and Jaupart 1990; Philips and Wood 2001) depending on magma physical properties and ascent rate. It is also thought that strombolian and lava …

340 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...These limitations have long precluded the acquisition of robust and systematic volcanic gas datasets at openvent volcanoes, thus making degassing processes easier to probe by studying volatile contents in silicate melt inclusions (MIs) (Blundy and Cashman, 2008; Métrich and Wallace, 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents.
Abstract: [1] Two unusual, highly explosive flank eruptions succeeded on Mount Etna in July August 2001 and in October 2002 to January 2003, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich (≥4 wt %) basaltic magma that rose from ≥10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas' evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6–4 km bsl, in agreement with seismic data and with the lack of preeruptive SO2 accumulation above the initial depth of sulphur exsolution (∼3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.

310 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...This has three main implications and consequences: (i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents…...

    [...]

  • ...(i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents N5 wt....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present some of the current petrological techniques that can be used for studying eruptive products and for constraining key magmatic variables such as pressure, temperature, and volatile content.
Abstract: Explosive volcanic eruptions constitute a major class of natural hazard with potentially profound economic and societal consequences. Although such eruptions cannot be prevented and only rarely may be anticipated with any degree of accuracy, better understanding of how explosive volcanoes work will lead to improved volcano monitoring and disaster mitigation. A major goal of modern volcanology is linking of surface-monitored signals from active volcanoes, such as seismicity, ground deformation and gas chemistry, to the subterranean processes that generate them. Because sub-volcanic systems cannot be accessed directly, most of what we know about these systems comes from studies of erupted products. Such studies shed light on what happens underground prior to and during eruptions, thereby providing an interpretative framework for post hoc evaluation of monitoring data. The aim of this review is to present some of the current petrological techniques that can be used for studying eruptive products and for constraining key magmatic variables such as pressure, temperature, and volatile content. We first review analytical techniques, paying particular attention to pitfalls and strategies for analyzing volcanic samples. We then examine commonly used geothermometry schemes, evaluating each by comparison with experimental data not used in the original geothermometer calibrations. As there are few mineral-based geobarometers applicable to magma storage regions, we review other methods used to determine pre-eruptive magma equilibration pressures. We then demonstrate how petrologically-constrained parameters can be compared to the contemporaneous monitoring record. These examples are drawn largely from Mount St. Helens volcano, for which there are abundant petrological and monitoring data. However, we emphasize that our approaches can be applied to any number of active volcanoes worldwide. Finally, we illustrate the application of these techniques to two different types of magmatic systems—large silicic magma chambers and small intermediate-composition magma storage regions—with particular focus on the combined evolution of melt …

301 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...These limitations have long precluded the acquisition of robust and systematic volcanic gas datasets at openvent volcanoes, thus making degassing processes easier to probe by studying volatile contents in silicate melt inclusions (MIs) (Blundy and Cashman, 2008; Métrich and Wallace, 2008)....

    [...]

Journal ArticleDOI
13 Jul 2007-Science
TL;DR: Spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano are used to demonstrate that gas slugs originate from as deep as the volcano-crust interface (∼3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence.
Abstract: Strombolian-type eruptive activity, common at many volcanoes, consists of regular explosions driven by the bursting of gas slugs that rise faster than surrounding magma. Explosion quakes associated with this activity are usually localized at shallow depth; however, where and how slugs actually form remain poorly constrained. We used spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano (Italy) to demonstrate that gas slugs originate from as deep as the volcano-crust interface (∼3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence. The observed decoupling between deep slug genesis and shallow (∼250-meter) explosion quakes may be a common feature of strombolian activity, determined by the geometry of plumbing systems.

294 citations


"A model of degassing for Stromboli ..." refers background or result in this paper

  • ...Our measurements here extend further the conclusions of Burton et al. (2007b): the temporal variability of the composition of the bulk (quiescent) plume requires the existence of a complex degassing regime in which a separate gas ascent plays a key role (Pichavant et al., 2009)....

    [...]

  • ...To start with, MI determinations (cfr. 5.1) and gas measurements (Burton et al., 2007a,b, and this study) offer ample evidence for that the shallow Stromboli's plumbing system is fluxed by the ascent of CO2-rich gas bubbles....

    [...]

  • ...Transition from closed- to open-system conditions was fixed at 50 MPa (or ∼2 km bsv), the pressure at which vesicularity of the HP magma is thought to become high enough for gas percolation through a network of inter-connected bubbles to occur (Burton et al., 2007a)....

    [...]

  • ...Our data support further the earlier conclusions of Burton et al. (2007b), demonstrating that the synexplosive gas phase is significantly richer in CO2 (and poorer in H2O and SO2) than the bulk plume (Fig....

    [...]

  • ...%) fraction of CO2-rich gas bubbles at reservoir conditions (Burton et al., 2007a,b)....

    [...]