scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A model of degassing for Stromboli volcano

TL;DR: In this article, the authors used the MultiGAS technique to provide the best documented record of gas plume discharges from Stromboli volcano to date, and showed that Strombolian's gases are dominated by H2O (48−98−mol); mean, 80%), and by CO2 (2−50−mol%; mean, 17%) and SO2 (0.2−14−mol; mean, 3%).
About: This article is published in Earth and Planetary Science Letters.The article was published on 2010-06-15 and is currently open access. It has received 144 citations till now. The article focuses on the topics: Strombolian eruption & Volcanic Gases.

Summary (4 min read)

1. Introduction

  • This, combined with recent developments in H2O–CO2 micro-analysis in silicate materials and the refinement of thermodynamic saturation codes, now opens the way to more detailed inspection of degassing processes.
  • Here, the authors report on the first MultiGAS measurements including H2O of the volcanic gas plume of Stromboli, an active basaltic volcano in Southern Italy (Fig. 1).
  • This combined volcanic gas-melt inclusion-thermodynamic approach finally leads to thorough characterization of degassing processes at Stromboli volcano, with general implications for all basaltic volcanism.

2. Stromboli volcano

  • The persistent Strombolian activity, for which the volcano is famous, began after the 3rd–7th centuries AD, and since then has continued without significant breaks or variations (Rosi et al., 2000).
  • Explosive activity is associated with a continuous “passive” streaming of gas from the crater area and with active degassing (“puffing”) originating from discrete small gas bursts, every 1–2 s. During the lava effusion, a paroxysmal eruption also occurred (on 15 March), which erupted a significant amount of basaltic pumice (Landi et al., 2009).
  • During July–December 2008 (the period over which the volcanic gas measurements are reported here), the volcano showed its typical activity, with rhythmic Strombolian explosions of variable energy at an average frequency of 10–15 events/h (see open-file reports at www.ct.ingv.it).
  • On September 7, December 6 and 17, three slightly more energetic events occurred.

3. Technique

  • The volcanic gas measurements reported here were carried out from July to December 2008, using the permanent MultiGAS installed on the summit of Stromboli by Istituto Nazionale di Geofisica and Vulcanologia (Sezione di Palermo).
  • Signals from both sensors were captured every 9 s from a data-logger board, which also enabled data logging and storage.
  • Because the instrument is located ∼150 m S–SE of the crater terrace (Fig. 1), plume gas sensing was only possible when moderate to strong winds from the northern quadrants blew on the island.
  • In contrast when the plume was gently lofting, rising vertically, or being dispersed north, the MultiGAS consistently detected the typical H2O (13,000– 18,000 ppm), CO2 (∼380 ppm), and SO2 (b0.1 ppm) concentrations in background air, and the cycle was considered null (e.g., no ratio was calculated from the data).

4.1. Raw data and calculation of volcanic gas composition

  • Fig. 2 shows an example of 1-cycle acquisition from the permanent MultiGAS at Stromboli.
  • From the raw plume concentration data (in ppm), the volcanic gas plume H2O/SO2 and H2O/CO2 ratios were derived by calculating the gradients of the best-fit regression lines in H2O vs. SO2 and H2O vs. CO2 scatter plots (Fig. 3), as previously reported for Etna (Shinohara et al., 2008).
  • This assumes that contributions from undetected species (e.g., H2, H2S, HCl) are relatively minor.
  • Visual observations and cross correlations of their dataset with seismic and thermal signals (available at http://www.ct.ingv.it) indicated that such short-term variations (generally lasting less than 2 min) systematically occurred soon after individual Strombolian bursts.
  • When the wind was particularly strong and explosive activity high, this syn-explosive gas phase, known to be compositionally distinct from the quiescent plume (Burton et al., 2007b), eventually reached the instrument (a few seconds after the explosion) before being diluted (and homogenised) within the bulk plume.

4.2. The H2O–CO2–SO2 composition of Stromboli's plume

  • As such, they resemble quite closely the typical composition of volcanic gases from arc-settings, though sharing with nearby Etna (Shinohara et al., 2008) a characteristic of CO2-enrichment (most volcanic gases from arc basaltic volcanoes have N90% H2O; Shinohara, 2008).
  • The most striking feature of the dataset is the large spread of plume compositions observed in only 6 months of observations.

5. Discussion

  • The striking range of volcanic gas compositions at Stromboli suggest dynamic magma degassing processes at this open-vent volcano.
  • This deep source area also supported the idea of a separate ascent of gas and melt in the shallow (less than 2.7 km) plumbing system, as also proposed for other basaltic systems (Edmonds and Gerlach, 2007).
  • The authors measurements here extend further the conclusions of Burton et al. (2007b): the temporal variability of the composition of the bulk plume requires the existence of a complex degassing regime in which a separate gas ascent plays a key role (Pichavant et al., 2009).
  • Visual observations suggest that the bulk Stromboli's plume is essentially contributed by both quiescent gas release from the magma ponding at the crater terrace' open vents, and by small bursts of over-pressurised gas pockets at the magma-free atmosphere (Harris and Ripepe, 2007).
  • Finally, comparison between modelled and observed volcanic gas compositions (Section 5.3) offers new clues on volcanic degassing processes, and on the structure of the magmatic plumbing system of Stromboli.

5.1. Melt inclusion record of magma ascent and degassing

  • There is consensus (Bertagnini et al., 2008) that two magma types are involved in the present-day Stromboli's activity.
  • The persistent behaviour of the volcano implies that a supply of deeply derived magmas must occur not only prior to/during a paroxysm, but also during the normal Strombolian activity (yet at a slower rate).
  • This has three main implications and consequences: (i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents N5 wt. % (Métrich et al., 2010).
  • The contrasting compositions, volatile contents, and depth of storage of LP and HP magmas (Table 2) imply that the magmatic gas phases in equilibrium with (and separated from) these two magma types are inevitably different, as calculated below.

5.2. Numerical modelling

  • Volatile contents in MIs (Table 2) are used here to initialize model calculations of volatile partitioning between the magmatic gas phase and the melt, which the authors performed using the code described in Moretti and Papale (2004).
  • The authors utilised the code to perform two sets of complementary calculations.
  • LP runs were initialised with the input parameters summarised in Table 2.
  • Themodel results are critically dependent on the choice of the total (exsolved+dissolved) magma CO2 content: four sets of LP runs were thus carried out at different CO2 contents (0.2, 2, 5 or 20%, respectively), to account for the presence of a non-negligible (but poorly constrained) fraction of CO2-rich gas bubbles at reservoir conditions.
  • The highest entrapment pressure (∼100 MPa) derived from volatile contents in MIs (Table 2) was taken as the starting pressure of their simulations, followed by step-wise pressure decrease in first closed-system to then opensystem conditions.

5.2.1. Model results, and comparison with natural data

  • The outputs of model calculations are, for each run and at each pressure, the equilibrium volatile compositions of coexisting melt and vapour phases.
  • The authors model results are qualitatively similar to the pressure-related model degassing trends presented by Allard (2010) (see his Fig. 3), which were yet based on the use of different saturation model and assumptions.
  • As such, the volatile compositions of glass embayments may reflect gas-melt interactions within the CO2-rich intermediate (2–4 km deep) magma ponding zone (cfr. 5.1).
  • Modelled dissolved sulphur contents (Fig. 7b) are also consistent with MI record, and again support a mechanism of progressive increase of the CO2TOT/H2OTOT ratio from trends 1 to 4.
  • The authors note however that some of the richest CO2 volcanic gas data are consistent with model gas compositions calculated at P=100–120 MPa in the LP model run 1 (CO2TOT=0.2 wt.%; Fig. 8).

5.3. A model of degassing for Stromboli volcano

  • The authors model calculations above provide a quantitative background for interpreting the source processes controlling the time-changing composition of Stromboli's volcanic gases.
  • In the most extreme conditions, the CO2-rich gas bubbles may be thought to be sourced by the deep (7–11 km deep) LP magma storage zone; though partial gas-melt reequilibration at shallower depths (and particularly upon gas bubble accumulation within — before leakage from — the intermediate 2– 4 km deep magma ponding zone) cannot be ruled out.
  • Secondly, there is supporting evidence at Stromboli for that continuous magma convection takes place within the shallow (b1 km) dyke system (Harris and Stevenson, 1997).
  • The shallow convective overturning of the HPmagma obviously gives rise to a second source of volatiles: degassing of dissolved volatiles in the ascending HP magma will produce gas bubbles which pressure-dependent compositional evolution is best described by curves 5 and 6 in Fig.

6. Conclusions

  • The MultiGAS volcanic gas observations presented here show that, in spite of the relatively uniform activity and petrology of erupted solid materials, Stromboli shares with other basaltic volcanoes an exceptional variability in gas compositions.
  • The mechanisms controlling such time-changing nature of Stromboli's gas emissions have been explored by combining gas measurements with the MI record of volatile abundance in magmas, and by contrasting natural compositions with model results derived with an equilibrium saturation code.
  • From this, the authors propose that the compositional features of Stromboli's quiescent and syn-explosive gas emissions result from themixing of gases persistently sourced by (i) degassing of dissolved volatiles in the porphyric magma filling the upper (b1 km) dyke-conduit system; and (ii) CO2-rich gas bubbles, originated at depth (at depths N4 km, or PN100 MPa) in the plumbing system.
  • The proposed mixing mechanism is constrained by independent petrologic and model data, and it is geologically straightforward since it only requires a persistent but time-modulated source of deep gas bubbles; this however does not exclude that additional control mechanisms on volcanic gas composition might be at work.
  • The authors conclude however that, since magma fluxing by a free CO2-rich vapour phase is a recurrent process, the proposed degassing mechanism is probably a key to interpret volcanic gas observations at many basaltic volcanoes.

Did you find this useful? Give us your feedback

Figures (10)
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an anomalous stable maximum temperature point (hereinafter MTP) was found around 2000m from the entrance of the Rio de Guia gallery, which divided the gallery into two sections, the outer section located outwards from MTP became colder while the inner section warmed up owing to less heat transfer into the deepest part of the gallery.
Abstract: In Tenerife there are a vast number of sub-horizontal blind water mines, called “galleries”. Seven air and soil temperatures and CO2 concentration profiles in air were carried out inside the Rio de Guia gallery (hereinafter RdG). An anomalous stable maximum temperature point (hereinafter MTP) was found around 2000 m from the entrance. During the warm period, a clear CO2 stagnation was detected before MTP, showing concentrations up to 14,000 ppm. In order to study gas emission and its dynamics inside the gallery, four stations were deployed around MTP. All stations recorded air and soil temperatures, and CO2 and Rn concentration in air from November 2009 to January 2011. After analyzing this dataset, it was possible to characterize the influence of MTP. This thermal anomaly divided the gallery into two sections. In the cold period, the outer section located outwards from MTP became colder while the inner section warmed up owing to a less heat transfer into the deepest part of the gallery. There were several short periods when variations in barometric pressure created an advection movement that was able to temporally change the gas behavior inside the gallery. Two soil gas samples were taken around MTP and their δ13C (CO2) ratios suggested a magmatic origin. All data were combined to create a model for the gas and thermal dynamics inside the gallery. This model, together with identification of background levels in each parameter, allows to identify any anomalous signal that could be elated with changes in volcanic activity.

3 citations

Journal ArticleDOI
TL;DR: A review of the geophysical approaches applied to understand open-vent volcanic activity and the open questions resulting from these insights can be found in this paper , where the authors present the results of a study of the volume of lava and tephra erupted at Arenal volcano.
Abstract: Abstract On 29 July 1968, there was a violent reactivation of Arenal volcano. The resulting westward-directed lateral blast eruption left two villages destroyed and 78 people dead. The activity continued as a long-lasting, open-vent eruption that evolved into seven recognisable phases reflecting changes in magma supply, explosive activity and cone evolution, and ended in October 2010. Here, we review this activity, the geophysical approaches applied to understanding it and the open questions resulting from these insights. The eruptive dynamics were characterised by almost constant lava effusion, degassing, strombolian and vulcanian explosions and infrequent pyroclastic density currents. In this study, the total rock dense equivalent volume of lava and tephra erupted is calculated at 757 ± 77 Mm 3 , while the volume of the lava flow field is 527 ± 58 Mm 3 . Typical seismic activity included harmonic and spasmodic tremors, long-period events and explosion signals with frequent audible “booms”. The decline of the eruptive activity started in 2000, with a decrease in the number and size of explosive events, a shift from long to short lava flows along with the collapse of lava flow fronts and the subsequent formation of downward-rolling lava block aprons, the frequent growth of dome-like structures on the summit and a gradual decrease in seismic energy. Multiple geological and geophysical studies during this 42-year-long period of open-vent activity at Arenal resulted in many advances in understanding the dynamics of andesitic blocky lava flows, the origin and diversity of pyroclastic density currents and seismic sources, as well as the role of site effects and rough topography in modifying the seismic wavefield. The acoustic measurements presented here include two types of events: typical explosions and small pressure transients. Features of the latter type are not usually observed at volcanoes with intermediate to evolved magma composition. Explosions have different waveforms and larger gas volumes than pressure transients, both types being associated with active and passive degassing, respectively. This body of data, results and knowledge can inform on the type of activity, and associated geophysical signals, of open-vent systems that are active for decades.

3 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate, and found that the elasticity and the viscosity dominantly depend on the compression rate and the temperature respectively, although both of them vary with time.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the Starzach site, a region featuring numerous natural CO2 emission spots, such as mofettes, that reappeared after a longer period of extensive industrial CO2 mining in combination with own measurements to introduce the site as an example on how gas leakage from an insecure CCS reservoir could manifest at the surface.
Abstract: In this paper, we present the Starzach site, a region featuring numerous natural CO2 emission spots, such as mofettes, that reappeared after a longer period of extensive industrial CO2 mining. We discuss the results of a detailed literature study on the geological setting and the activities related to the gas mining in combination with own measurements to introduce the site as an example on how gas leakage from an insecure CCS reservoir could manifest at the surface. The site is in particular interesting for such investigations as the CO2 emissions started to replenish after the end of the CO2 mining and offers the unique possibility to investigate an increase in degassing activity as it might be expected for an active CCS site where leakage is suspected. Based on the geological setting and soil, gas emission, and isotope investigations, we further discuss the source of the CO2 emission and the gas ascent to the ground surface via deep-reaching faults, latter being so far excluded by previous work. The combination of our extensive literature review and recent field investigations allowed us to draw new geological conclusions for the site that were under discussion for a long time and to give insight into the site’s potential for CCS-related analog studies in the future.

3 citations


Cites background from "A model of degassing for Stromboli ..."

  • ...It can intrude and rise much easier and faster; and the pressure decrease associated with the rise leads to the release of volcanic gases (mainly water vapor, carbon dioxide, and sulfur dioxide) from the melt (Aiuppa et al. 2010; Shinohara 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a dataset of the volcanic gas survey performed during 2009 and 2010 at Stromboli (Aeolian Islands - Italy). Dry gas collection occurred discontinuously at the crater fumaroles for subsequent chemical and isotopic analyses in the laboratory.
Abstract: The geochemistry of volcanic gases has been fruitfully applied to identify important changes in the volcanic activity. This study reviews the dataset of the volcanic gas survey performed during 2009 and 2010 at Stromboli (Aeolian Islands - Italy). Dry gas collection occurred discontinuously at the crater fumaroles for subsequent chemical and isotopic (δ13C-CO2) analyses in the laboratory.A tailor-made device enabled continuous survey of H2 molar fraction and CO2 flux on the same site. Evaluation of the raw data was performed in accordance with air temperature, atmospheric pressure, wind speed and wind direction dataset. Both MLR (Multiple Linear Regression) and FFT (Fast Fourier Transform) analyses allowed filtering the dataset from the environmental effects. The MLR analysis indicated that wind speed and air temperature affected the CO2 flux. Changes in the atmospheric pressure promoted pumping effect of the fumarole gas and caused changes in the H2 molar fraction. The power spectral analysis revealed daily cycles in both gases. A digital signal filtering procedure enabled minimizing the environmental effects.This study confirmed that gas emissions from the crater fumaroles have both chemical ad isotopic composition similar to the magmatic gas phase. The results of the continuous survey showed that changes of both H2 and CO2 correlated with changes of the volcanic activity. Therefore, H2 and CO2 resulted effective tracers of the dynamics involving the plumbing system of Stromboli. Identification of changes in the gas emissions at open conduit volcanoes offers a great advance over the ground gas survey. The results of the continuous survey at Stromboli showed that H2 could apply as an auxiliary parameter of the CO2 flux in the surveillance programs of active volcanoes.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: Papale et al. as mentioned in this paper applied thermodynamic equilibrium between gaseous and liquid volatile components to model the volatile saturation surface in H 2 O−CO 2 -silicate melt systems.

491 citations


"A model of degassing for Stromboli ..." refers background or methods in this paper

  • ...b A note of caution should be spent on the application of the H2O–CO2 model (Papale et al., 2006) on shoshonitic composition....

    [...]

  • ...Standard deviations of model binary interaction terms showmaximum values for iron oxides, because they encompass all uncertainties on fO2 conditions within the calibration dataset (Papale et al., 2006)....

    [...]

Journal ArticleDOI
TL;DR: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state as mentioned in this paper.
Abstract: The abundances of CO2, H2O, S and halogens dissolved in basaltic magmas are strongly variable because their solubilities and ability to be fractionated in the vapor phase depend on several parameters such as pressure, temperature, melt composition and redox state. Experimental and analytical studies show that CO2 is much less soluble in silicate melts compared to H2O (e.g., Javoy and Pineau 1991; Dixon et al. 1995). As much as 90% of the initial CO2 dissolved in basaltic melts may be already degassed at crustal depths, whereas H2O remains dissolved because of its higher solubility such that H2O contents of basaltic magmas at crustal depths may reach a few percents. Most subduction-related basaltic magmas are rich in H2O (up to 6–8 wt%; Sisson and Grove 1993; Roggensack et al. 1997; Newman et al. 2000; Pichavant et al. 2002; Grove et al. 2005) compared to mid-ocean ridge basalts (<1 wt%; Sobolev and Chaussidon 1996; Fischer and Marty 2005; Wallace 2005). During magma movement towards the surface, exsolution of major volatile constituents (CO2, H2O) causes gas bubble nucleation, growth, and possible coalescence that exert a strong control on the dynamics of magma ascent and eruption (Anderson 1975; Sparks 1978; Tait et al. 1989). Gas bubbles have the ability to move faster than magma (Sparks 1978), particularly in low viscosity basaltic magmas. Bubble accumulation, coalescence and foam collapse give rise to differential transfer of gas slugs and periodic gas bursting (Strombolian activity; Jaupart and Vergniolle 1988, 1989) or periodic lava fountains (Vergniolle and Jaupart 1990; Philips and Wood 2001) depending on magma physical properties and ascent rate. It is also thought that strombolian and lava …

340 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...These limitations have long precluded the acquisition of robust and systematic volcanic gas datasets at openvent volcanoes, thus making degassing processes easier to probe by studying volatile contents in silicate melt inclusions (MIs) (Blundy and Cashman, 2008; Métrich and Wallace, 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents.
Abstract: [1] Two unusual, highly explosive flank eruptions succeeded on Mount Etna in July August 2001 and in October 2002 to January 2003, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H2O, CO2, S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich (≥4 wt %) basaltic magma that rose from ≥10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas' evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6–4 km bsl, in agreement with seismic data and with the lack of preeruptive SO2 accumulation above the initial depth of sulphur exsolution (∼3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.

310 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...This has three main implications and consequences: (i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents…...

    [...]

  • ...(i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents N5 wt....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present some of the current petrological techniques that can be used for studying eruptive products and for constraining key magmatic variables such as pressure, temperature, and volatile content.
Abstract: Explosive volcanic eruptions constitute a major class of natural hazard with potentially profound economic and societal consequences. Although such eruptions cannot be prevented and only rarely may be anticipated with any degree of accuracy, better understanding of how explosive volcanoes work will lead to improved volcano monitoring and disaster mitigation. A major goal of modern volcanology is linking of surface-monitored signals from active volcanoes, such as seismicity, ground deformation and gas chemistry, to the subterranean processes that generate them. Because sub-volcanic systems cannot be accessed directly, most of what we know about these systems comes from studies of erupted products. Such studies shed light on what happens underground prior to and during eruptions, thereby providing an interpretative framework for post hoc evaluation of monitoring data. The aim of this review is to present some of the current petrological techniques that can be used for studying eruptive products and for constraining key magmatic variables such as pressure, temperature, and volatile content. We first review analytical techniques, paying particular attention to pitfalls and strategies for analyzing volcanic samples. We then examine commonly used geothermometry schemes, evaluating each by comparison with experimental data not used in the original geothermometer calibrations. As there are few mineral-based geobarometers applicable to magma storage regions, we review other methods used to determine pre-eruptive magma equilibration pressures. We then demonstrate how petrologically-constrained parameters can be compared to the contemporaneous monitoring record. These examples are drawn largely from Mount St. Helens volcano, for which there are abundant petrological and monitoring data. However, we emphasize that our approaches can be applied to any number of active volcanoes worldwide. Finally, we illustrate the application of these techniques to two different types of magmatic systems—large silicic magma chambers and small intermediate-composition magma storage regions—with particular focus on the combined evolution of melt …

301 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...These limitations have long precluded the acquisition of robust and systematic volcanic gas datasets at openvent volcanoes, thus making degassing processes easier to probe by studying volatile contents in silicate melt inclusions (MIs) (Blundy and Cashman, 2008; Métrich and Wallace, 2008)....

    [...]

Journal ArticleDOI
13 Jul 2007-Science
TL;DR: Spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano are used to demonstrate that gas slugs originate from as deep as the volcano-crust interface (∼3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence.
Abstract: Strombolian-type eruptive activity, common at many volcanoes, consists of regular explosions driven by the bursting of gas slugs that rise faster than surrounding magma. Explosion quakes associated with this activity are usually localized at shallow depth; however, where and how slugs actually form remain poorly constrained. We used spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano (Italy) to demonstrate that gas slugs originate from as deep as the volcano-crust interface (∼3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence. The observed decoupling between deep slug genesis and shallow (∼250-meter) explosion quakes may be a common feature of strombolian activity, determined by the geometry of plumbing systems.

294 citations


"A model of degassing for Stromboli ..." refers background or result in this paper

  • ...Our measurements here extend further the conclusions of Burton et al. (2007b): the temporal variability of the composition of the bulk (quiescent) plume requires the existence of a complex degassing regime in which a separate gas ascent plays a key role (Pichavant et al., 2009)....

    [...]

  • ...To start with, MI determinations (cfr. 5.1) and gas measurements (Burton et al., 2007a,b, and this study) offer ample evidence for that the shallow Stromboli's plumbing system is fluxed by the ascent of CO2-rich gas bubbles....

    [...]

  • ...Transition from closed- to open-system conditions was fixed at 50 MPa (or ∼2 km bsv), the pressure at which vesicularity of the HP magma is thought to become high enough for gas percolation through a network of inter-connected bubbles to occur (Burton et al., 2007a)....

    [...]

  • ...Our data support further the earlier conclusions of Burton et al. (2007b), demonstrating that the synexplosive gas phase is significantly richer in CO2 (and poorer in H2O and SO2) than the bulk plume (Fig....

    [...]

  • ...%) fraction of CO2-rich gas bubbles at reservoir conditions (Burton et al., 2007a,b)....

    [...]