scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A model of degassing for Stromboli volcano

TL;DR: In this article, the authors used the MultiGAS technique to provide the best documented record of gas plume discharges from Stromboli volcano to date, and showed that Strombolian's gases are dominated by H2O (48−98−mol); mean, 80%), and by CO2 (2−50−mol%; mean, 17%) and SO2 (0.2−14−mol; mean, 3%).
About: This article is published in Earth and Planetary Science Letters.The article was published on 2010-06-15 and is currently open access. It has received 144 citations till now. The article focuses on the topics: Strombolian eruption & Volcanic Gases.

Summary (4 min read)

1. Introduction

  • This, combined with recent developments in H2O–CO2 micro-analysis in silicate materials and the refinement of thermodynamic saturation codes, now opens the way to more detailed inspection of degassing processes.
  • Here, the authors report on the first MultiGAS measurements including H2O of the volcanic gas plume of Stromboli, an active basaltic volcano in Southern Italy (Fig. 1).
  • This combined volcanic gas-melt inclusion-thermodynamic approach finally leads to thorough characterization of degassing processes at Stromboli volcano, with general implications for all basaltic volcanism.

2. Stromboli volcano

  • The persistent Strombolian activity, for which the volcano is famous, began after the 3rd–7th centuries AD, and since then has continued without significant breaks or variations (Rosi et al., 2000).
  • Explosive activity is associated with a continuous “passive” streaming of gas from the crater area and with active degassing (“puffing”) originating from discrete small gas bursts, every 1–2 s. During the lava effusion, a paroxysmal eruption also occurred (on 15 March), which erupted a significant amount of basaltic pumice (Landi et al., 2009).
  • During July–December 2008 (the period over which the volcanic gas measurements are reported here), the volcano showed its typical activity, with rhythmic Strombolian explosions of variable energy at an average frequency of 10–15 events/h (see open-file reports at www.ct.ingv.it).
  • On September 7, December 6 and 17, three slightly more energetic events occurred.

3. Technique

  • The volcanic gas measurements reported here were carried out from July to December 2008, using the permanent MultiGAS installed on the summit of Stromboli by Istituto Nazionale di Geofisica and Vulcanologia (Sezione di Palermo).
  • Signals from both sensors were captured every 9 s from a data-logger board, which also enabled data logging and storage.
  • Because the instrument is located ∼150 m S–SE of the crater terrace (Fig. 1), plume gas sensing was only possible when moderate to strong winds from the northern quadrants blew on the island.
  • In contrast when the plume was gently lofting, rising vertically, or being dispersed north, the MultiGAS consistently detected the typical H2O (13,000– 18,000 ppm), CO2 (∼380 ppm), and SO2 (b0.1 ppm) concentrations in background air, and the cycle was considered null (e.g., no ratio was calculated from the data).

4.1. Raw data and calculation of volcanic gas composition

  • Fig. 2 shows an example of 1-cycle acquisition from the permanent MultiGAS at Stromboli.
  • From the raw plume concentration data (in ppm), the volcanic gas plume H2O/SO2 and H2O/CO2 ratios were derived by calculating the gradients of the best-fit regression lines in H2O vs. SO2 and H2O vs. CO2 scatter plots (Fig. 3), as previously reported for Etna (Shinohara et al., 2008).
  • This assumes that contributions from undetected species (e.g., H2, H2S, HCl) are relatively minor.
  • Visual observations and cross correlations of their dataset with seismic and thermal signals (available at http://www.ct.ingv.it) indicated that such short-term variations (generally lasting less than 2 min) systematically occurred soon after individual Strombolian bursts.
  • When the wind was particularly strong and explosive activity high, this syn-explosive gas phase, known to be compositionally distinct from the quiescent plume (Burton et al., 2007b), eventually reached the instrument (a few seconds after the explosion) before being diluted (and homogenised) within the bulk plume.

4.2. The H2O–CO2–SO2 composition of Stromboli's plume

  • As such, they resemble quite closely the typical composition of volcanic gases from arc-settings, though sharing with nearby Etna (Shinohara et al., 2008) a characteristic of CO2-enrichment (most volcanic gases from arc basaltic volcanoes have N90% H2O; Shinohara, 2008).
  • The most striking feature of the dataset is the large spread of plume compositions observed in only 6 months of observations.

5. Discussion

  • The striking range of volcanic gas compositions at Stromboli suggest dynamic magma degassing processes at this open-vent volcano.
  • This deep source area also supported the idea of a separate ascent of gas and melt in the shallow (less than 2.7 km) plumbing system, as also proposed for other basaltic systems (Edmonds and Gerlach, 2007).
  • The authors measurements here extend further the conclusions of Burton et al. (2007b): the temporal variability of the composition of the bulk plume requires the existence of a complex degassing regime in which a separate gas ascent plays a key role (Pichavant et al., 2009).
  • Visual observations suggest that the bulk Stromboli's plume is essentially contributed by both quiescent gas release from the magma ponding at the crater terrace' open vents, and by small bursts of over-pressurised gas pockets at the magma-free atmosphere (Harris and Ripepe, 2007).
  • Finally, comparison between modelled and observed volcanic gas compositions (Section 5.3) offers new clues on volcanic degassing processes, and on the structure of the magmatic plumbing system of Stromboli.

5.1. Melt inclusion record of magma ascent and degassing

  • There is consensus (Bertagnini et al., 2008) that two magma types are involved in the present-day Stromboli's activity.
  • The persistent behaviour of the volcano implies that a supply of deeply derived magmas must occur not only prior to/during a paroxysm, but also during the normal Strombolian activity (yet at a slower rate).
  • This has three main implications and consequences: (i) first, de-hydration of a magma can be caused by fluxing with deep-rising CO2-rich gas (Spilliaert et al., 2006), a fact which is suggestive of the presence of a magma ponding zone at 2–4 km bsv, where CO2-rich gas bubbles accumulate to contents N5 wt. % (Métrich et al., 2010).
  • The contrasting compositions, volatile contents, and depth of storage of LP and HP magmas (Table 2) imply that the magmatic gas phases in equilibrium with (and separated from) these two magma types are inevitably different, as calculated below.

5.2. Numerical modelling

  • Volatile contents in MIs (Table 2) are used here to initialize model calculations of volatile partitioning between the magmatic gas phase and the melt, which the authors performed using the code described in Moretti and Papale (2004).
  • The authors utilised the code to perform two sets of complementary calculations.
  • LP runs were initialised with the input parameters summarised in Table 2.
  • Themodel results are critically dependent on the choice of the total (exsolved+dissolved) magma CO2 content: four sets of LP runs were thus carried out at different CO2 contents (0.2, 2, 5 or 20%, respectively), to account for the presence of a non-negligible (but poorly constrained) fraction of CO2-rich gas bubbles at reservoir conditions.
  • The highest entrapment pressure (∼100 MPa) derived from volatile contents in MIs (Table 2) was taken as the starting pressure of their simulations, followed by step-wise pressure decrease in first closed-system to then opensystem conditions.

5.2.1. Model results, and comparison with natural data

  • The outputs of model calculations are, for each run and at each pressure, the equilibrium volatile compositions of coexisting melt and vapour phases.
  • The authors model results are qualitatively similar to the pressure-related model degassing trends presented by Allard (2010) (see his Fig. 3), which were yet based on the use of different saturation model and assumptions.
  • As such, the volatile compositions of glass embayments may reflect gas-melt interactions within the CO2-rich intermediate (2–4 km deep) magma ponding zone (cfr. 5.1).
  • Modelled dissolved sulphur contents (Fig. 7b) are also consistent with MI record, and again support a mechanism of progressive increase of the CO2TOT/H2OTOT ratio from trends 1 to 4.
  • The authors note however that some of the richest CO2 volcanic gas data are consistent with model gas compositions calculated at P=100–120 MPa in the LP model run 1 (CO2TOT=0.2 wt.%; Fig. 8).

5.3. A model of degassing for Stromboli volcano

  • The authors model calculations above provide a quantitative background for interpreting the source processes controlling the time-changing composition of Stromboli's volcanic gases.
  • In the most extreme conditions, the CO2-rich gas bubbles may be thought to be sourced by the deep (7–11 km deep) LP magma storage zone; though partial gas-melt reequilibration at shallower depths (and particularly upon gas bubble accumulation within — before leakage from — the intermediate 2– 4 km deep magma ponding zone) cannot be ruled out.
  • Secondly, there is supporting evidence at Stromboli for that continuous magma convection takes place within the shallow (b1 km) dyke system (Harris and Stevenson, 1997).
  • The shallow convective overturning of the HPmagma obviously gives rise to a second source of volatiles: degassing of dissolved volatiles in the ascending HP magma will produce gas bubbles which pressure-dependent compositional evolution is best described by curves 5 and 6 in Fig.

6. Conclusions

  • The MultiGAS volcanic gas observations presented here show that, in spite of the relatively uniform activity and petrology of erupted solid materials, Stromboli shares with other basaltic volcanoes an exceptional variability in gas compositions.
  • The mechanisms controlling such time-changing nature of Stromboli's gas emissions have been explored by combining gas measurements with the MI record of volatile abundance in magmas, and by contrasting natural compositions with model results derived with an equilibrium saturation code.
  • From this, the authors propose that the compositional features of Stromboli's quiescent and syn-explosive gas emissions result from themixing of gases persistently sourced by (i) degassing of dissolved volatiles in the porphyric magma filling the upper (b1 km) dyke-conduit system; and (ii) CO2-rich gas bubbles, originated at depth (at depths N4 km, or PN100 MPa) in the plumbing system.
  • The proposed mixing mechanism is constrained by independent petrologic and model data, and it is geologically straightforward since it only requires a persistent but time-modulated source of deep gas bubbles; this however does not exclude that additional control mechanisms on volcanic gas composition might be at work.
  • The authors conclude however that, since magma fluxing by a free CO2-rich vapour phase is a recurrent process, the proposed degassing mechanism is probably a key to interpret volcanic gas observations at many basaltic volcanoes.

Did you find this useful? Give us your feedback

Figures (10)
Citations
More filters
Journal ArticleDOI
TL;DR: The role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth as discussed by the authors, but the uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle.
Abstract: Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Berner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth. Notwithstanding this importance, the flux of CO2 from the Earth is poorly constrained. The uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle. Notwithstanding the uncertainties in our understanding of CO2 degassing from Earth, it is clear that these natural emissions were recently dwarfed by anthropogenic emissions, which have rapidly increased since industrialization began on a large scale in the 18th century, leading to a rapid increase in atmospheric CO2 concentrations. While atmospheric CO2 concentrations have varied between 190–280 ppm for the last 400,000 years (Zeebe and Caldeira 2008), human activity has produced a remarkable increase …

309 citations


Cites background from "A model of degassing for Stromboli ..."

  • ...Gas can stream through magma from depth to the surface (Wallace et al. 2005), as surmised to occur at Soufrière Hills volcano, Montserrat (Edmonds et al. 2010) and Stromboli volcano (Aiuppa et al. 2010)....

    [...]

Journal ArticleDOI
TL;DR: This paper reviewed the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment.
Abstract: Despite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (−II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2−, SO42− and SO32− in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., Metrich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment. ### Geodynamics and the geochemical behavior of sulfur The …

172 citations


Cites background from "A model of degassing for Stromboli ..."

  • ...An important development is that long-term installations (using Wi-Fi or cell-phone networks, or satellite telemetry) are beginning to provide valuable and near-real time insights into the relationships between surface emissions and magmatic processes (e.g., Aiuppa et al. 2007b, 2010)....

    [...]

  • ...2003, 2008), and volcanic gas emission data (Allard et al. 1994 ; Burton et al. 2007a ; Aiuppa et al. 2010; Allard 2010)....

    [...]

  • ...…whose plumbing system is constrained by both phase equilibria (Di Carlo et al. 2006; Pichavant et al. 2009), detailed melt inclusion work (Métrich et al. 2001; Bertagnini et al. 2003, 2008), and volcanic gas emission data (Allard et al. 1994; Burton et al. 2007a; Aiuppa et al. 2010; Allard 2010)....

    [...]

Journal ArticleDOI
TL;DR: In this article, an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H^C^O^S^Cl fluid under oxidized conditions (fO2 of 1·0^2· 4l og units above the Ni^NiO buffer).
Abstract: Magma degassing processes are commonly elucidated by studies of melt inclusions in erupted phenocrysts and measurements of gas discharge at volcanic vents, allied to experimentally constrained models of volatile solubility. Here we develop an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H^C^O^S^Cl fluid under oxidized conditions (fO2 of 1·0^2· 4l og units above the Ni^NiO buffer). Synthetic experimental starting materials were based on basaltic magmas erupted at the persistently degassing volcanoes of Stromboli (Italy) and Masaya (Nicaragua) with an initial volatile inventory matched to the most undegassed melt inclusions from each volcano. Experiments were run at 25^400 MPa under super-liquidus conditions (11508C). Run product glasses and starting materials were analysed by electron microprobe, secondary ion mass spectrometry, Fourier transform infrared spectroscopy, Karl-Fischer titration, Fe 2þ /Fe 3þ colorimetry and CS analyser. The composition of the exsolved vapour in each run was determined by mass balance. Our results show that H2O/ CO2 ratios increase systematically with decreasing pressure, whereas CO2/S ratios attain a maximum at pressures of 100^300 MPa. S is preferentially released over Cl at low pressures, leading to a sharp increase in vapour S/Cl ratios and a sharp drop in the S/Cl ratios of glasses. This accords with published measurements of volatile concentrations in melt inclusion and groundmass glasses at Stromboli (and Etna). Experiments with different S abundances show that the H2O and CO2 contents of the melt at fluid saturation are not affected. The CO2 solubility in experiments using both sets of starting materials is well matched to calculated solubilities using published models. Models consistently overestimate H2O solubilities for the Stromboli-like composition, leading to calculated vapour compositions that are more CO2-rich and calculated degassing trajectories that are more strongly curved than observed in experiments. The difference is less acute for the Masaya-like composition, emphasizing the important compositional dependence of solubility and melt^ vapour partitioning. Our novel experimental method can be readily extended to other bulk compositions.

148 citations


Cites background or methods or result from "A model of degassing for Stromboli ..."

  • ...…from https://academic.oup.com/petrology/article-abstract/52/9/1737/1437269/Experimental-Simulation-of-Closed-System-Degassing by guest on 16 September 2017 from the two volcanoes: Stromboli data are from Bertagnini et al. (2003) and Me¤ trich et al. (2010); Masaya data from Sadofsky et al. (2008)....

    [...]

  • ...At Stromboli, petrological studies show that a basaltic magma in equilibrium with a fluid phase in a deep-seated reservoir at 400MPa (Me¤ trich et al., 2001; Bertagnini et al., 2003; Pichavant et al., 2009) starts to degas during ascent. Under these conditions, according to our experimental results, fluids evolve from dominantly CO2-rich at 400MPa, to progressively more H2O-rich until 150MPa, and then become dramatically H2O-enriched at lower pressures. These results are consistent with experimental results obtained for golden pumices from Stromboli (Landi et al., 2004) equilibrated with an H2O^CO2 fluid phase (Pichavant et al., 2009). Burton et al. (2007a) and Aiuppa et al....

    [...]

  • ...1 experimental data for S and Cl with the melt inclusions from Stromboli (Me¤ trich et al., 2001, 2010; Bertagnini et al., 2003)....

    [...]

  • ...(2003) and Me¤ trich et al. (2010); Masaya data from Sadofsky et al. (2008). As no CO2 data for Masaya were presented by Sadofsky et al. (2008), we used the highest values ( 7000 ppm) reported by Atlas & Dixon (2006). For each volcano two mixtures were prepared with different initial sulphur contents to better investigate the behaviour of sulphur and its potential influence on the behaviour of other volatiles....

    [...]

  • ...1 experimental data for S and Cl with the melt inclusions from Stromboli (Me¤ trich et al., 2001, 2010; Bertagnini et al., 2003). In Fig. 12a and b, respectively, we plot S and Cl in melt inclusions against the calculated H2O^CO2 saturation pressure for the same melt inclusion using VolatileCalc [it would make relatively little difference if we calculated pressure from our experimental data or used Papale et al. (2006)]. Melt inclusions show a good match to the low-sulphur series of experiments (St8.1.A), showing little change in dissolved S and Cl from 400 to 200MPa, followed by a sharp decrease in S, but not Cl, at P5150MPa. The matrix glass analyses of Me¤ trich et al. (2001) plot at the low-pressure extremity of this trend....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors examined the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake.

126 citations


Additional excerpts

  • ...The first scenario is reminiscent of trends observed at open-conduit volcanoes such as Stromboli and Etna ( [Aiuppa et al., 2007], [Aiuppa et al., 2010] and [Shinohara et al., 2008]); in the Erebus case, the explosive gas composition can be manufactured with ~ 50 wt.% of the deep, almost CO2-pure,…...

    [...]

  • ...…P. Papale, H. Shinohara, M. Valenza Forecasting Etna eruptions by real-time observation of volcanic gas composition Geology, 35 (2007), pp. 1115–1118 Aiuppa et al., 2010 A. Aiuppa, A. Bertagnini, N. Métrich, R. Moretti, A. Di Muro, M. Liuzzo, G. Tamburello A degassing model for Stromboli volcano…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the global variations of volcanic arc CO 2 /S T gas ratios are reviewed and a subset of high-temperature (≥450°C) arc gases are selected to be used to infer the deep source of volatiles.

113 citations

References
More filters
Journal ArticleDOI
01 Jun 2009-Geology
TL;DR: In this article, an analysis of volatile (CO2, H2O, S, Cl, F), semivolatile (Cu), and involatile (Nb, La) elements trapped in olivine-hosted melt inclusions from these latest eruptions reveal the effects of the sustained interaction between a percolating gas phase and the stored magma.
Abstract: At Mount Etna, Italy, vigorous gas-rich eruptions in A.D. 2001, 2002, and 2003 were followed by gas-poor eruptions in 2004, 2006, and 2007. Analyses of volatile (CO2, H2O, S, Cl, F), semivolatile (Cu), and involatile (Nb, La) elements trapped in olivine-hosted melt inclusions from these latest eruptions reveal the effects of the sustained interaction between a percolating gas phase and the stored magma. Melt inclusion compositions indicate that magmas erupted from 2004 to 2007 were residual from the 2001–2003 eruptions, and show significant evolution in the volatile content of the melt. These melt inclusion observations, and variations in the C/S of volcanic gases, can be accounted for if melts reequilibrated with CO2-rich gases during storage and prior to entrapment as melt inclusions. Sustained gas percolation caused loss of water and enhancement of CO2 in the evolving melt and may strongly influence the behavior of Cu, which potentially partitions into the gas phase. Vapor-melt interactions during magma storage are important controls on magma evolution at persistently degassing volcanoes.

124 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...The apparent H2O-depletion captured by MIs (relative to model curves) is an hint for that magma fluxing by CO2-rich gas bubbles (leading to magma de-hydration) has a major impact on magma resident in the upper conduit, as observed elsewhere (Collins et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present three models for magma budget during steady-state volcanic activity, by which non-erupted magma is emplaced as dykes or cumulates or crystallises in place.
Abstract: We present three models for magma budget during steady-state volcanic activity, by which non-erupted magma is emplaced as dykes or cumulates or crystallises in place. Using gas and thermal data we apply our models at Vulcano to calculate degassing, cooling and crystallisation of magma at a rate of 40–375 kg s−1 within a magma body with an upper surface at a ∼2 km depth. At Stromboli we calculate a steady magma supply of 300–1300 kg s−1 to shallow (<1 km) depths.

113 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...Secondly, there is supporting evidence at Stromboli for that continuous magma convection takes place within the shallow (b1 km) dyke system (Harris and Stevenson, 1997)....

    [...]

Journal ArticleDOI
TL;DR: Current and future directions in the field of geochemical studies of volcanic degassing processes are reviewed and how the new insights are beginning to change the way in which the authors understand and classify volcanic eruptions are illustrated.
Abstract: Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in which we understand and classify volcanic eruptions.

111 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...deep) of such gas separation are still not entirely understood (Edmonds, 2008)....

    [...]

  • ...…exerts a key control on both quiescent (Burton et al., 2007a) and eruptive (Edmonds and Gerlach, 2007) degassing of basaltic volcanoes, the mechanisms (structural vs. fluid-dynamic control) and depths (shallow vs. deep) of such gas separation are still not entirely understood (Edmonds, 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the triggering mechanism of the Stromboli eruption was initiated at moderate pressures (≥240 MPa) and was related to bubble-driven ascent of magma blobs, which interacted with overlying slightly more evolved melts and, finally mingled with the shallow crystal-rich magma just before the eruption.
Abstract: [1] The 5 April 2003 paroxysm of Stromboli occurred during an ongoing effusive episode that initiated on 28 December 2002. It mainly consisted in two, a few seconds apart cannon-like explosions followed by a vertical gas/pyroclast jet. The HK-basaltic pumices, that were generated, mainly contain crystals that were drained back from the shallow parts of the plumbing system. Few euhedral to anhedral olivines and their melt inclusions testify to crystal fractionation and possible mixing between HK-basaltic magmas variable in their volatile content, extent of evolution and volume. The most primitive, volatile-rich, HK-basalt term is sizable at micrometer scale, only. We propose that the triggering mechanism of the paroxysm was initiated at moderate pressures (≥240 MPa) and was related to bubble-driven ascent of magma blobs. The latter rose through and interacted with overlying slightly more evolved melts and, finally mingled with the shallow crystal-rich magma just before the eruption.

109 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the first combined measurements of the composition and flux of gas emitted from Nyiragongo volcano by ground-based remote-sensing techniques, and explain these observations by a regime of steady state degassing in which bubbles nucleate and ascend in chemical equilibrium with the convecting magma.
Abstract: [1] We report the first combined measurements of the composition and flux of gas emitted from Nyiragongo volcano by ground-based remote-sensing techniques. Ultraviolet spectroscopic measurements made in May/June 2005 and January 2006 indicate average SO(2) emission rates of 38 kg s(-1) and 23 kg s(-1), respectively. Open-path Fourier transform infrared spectroscopic measurements obtained in May/June 2005, January 2006, and June 2007 indicate average molar proportions of 70, 24, 4.6, 0.87, 0.26, 0.11, and 0.0016% for H(2)O, CO(2), SO(2), CO, HCl, HF, and OCS, respectively. The composition of the plume was remarkably similar in 2005, 2006, and 2007, with little temporal variation in proportions of CO(2), SO(2), and CO, in particular, on the scale of seconds or days or even between the three field campaigns that span a period of 24 months. This stability persisted despite a wide range of degassing behaviors on the surface of the summit crater's lava lake ( including discrete strombolian bursts and lava fountains) and variations in the SO(2) emission rate. We explain these observations by a regime of steady state degassing in which bubbles nucleate and ascend in chemical equilibrium with the convecting magma. Short-term ( seconds to minutes) temporal fluctuations in the SO(2)-HCl-HF composition were observed, and these are attributed to shallow degassing processes.

108 citations


"A model of degassing for Stromboli ..." refers background in this paper

  • ...…some persistently degassing volcanoes display an apparent stability in both activity state and volcanic gas composition for years (e.g., Nyiragongo, Sawyer et al., 2008), Stromboli shares with nearby Etna (Aiuppa et al., 2007) a timechanging nature of both volcanic activity state and volcanic gas…...

    [...]

  • ...Indeed, whilst some persistently degassing volcanoes display an apparent stability in both activity state and volcanic gas composition for years (e.g., Nyiragongo, Sawyer et al., 2008), Stromboli shares with nearby Etna (Aiuppa et al., 2007) a timechanging nature of both volcanic activity state and volcanic gas composition....

    [...]