scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A modified K-means clustering algorithm for use in isolated work recognition

01 Jun 1985-IEEE Transactions on Acoustics, Speech, and Signal Processing (IEEE)-Vol. 33, Iss: 3, pp 587-594
TL;DR: A clustering algorithm based on a standard K-means approach which requires no user parameter specification is presented and experimental data show that this new algorithm performs as well or better than the previously used clustering techniques when tested as part of a speaker-independent isolated word recognition system.
Abstract: Studies of isolated word recognition systems have shown that a set of carefully chosen templates can be used to bring the performance of speaker-independent systems up to that of systems trained to the individual speaker. The earliest work in this area used a sophisticated set of pattern recognition algorithms in a human-interactive mode to create the set of templates (multiple patterns) for each word in the vocabulary. Not only was this procedure time consuming but it was impossible to reproduce exactly because it was highly dependent on decisions made by the experimenter. Subsequent work led to an automatic clustering procedure which, given only a set of clustering parameters, clustered patterns with the same performance as the previously developed supervised algorithms. The one drawback of the automatic procedure was that the specification of the input parameter set was found to be somewhat dependent on the vocabulary type and size of population to be clustered. Since a naive user of such a statistical clustering algorithm could not be expected, in general, to know how to choose the word clustering parameters, even this automatic clustering algorithm was not appropriate for a completely general word recognition system. It is the purpose of this paper to present a clustering algorithm based on a standard K-means approach which requires no user parameter specification. Experimental data show that this new algorithm performs as well or better than the previously used clustering techniques when tested as part of a speaker-independent isolated word recognition system.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper surveys and summarizes previous works that investigated the clustering of time series data in various application domains, including general-purpose clustering algorithms commonly used in time series clustering studies.
Abstract: Time series clustering has been shown effective in providing useful information in various domains. There seems to be an increased interest in time series clustering as part of the effort in temporal data mining research. To provide an overview, this paper surveys and summarizes previous works that investigated the clustering of time series data in various application domains. The basics of time series clustering are presented, including general-purpose clustering algorithms commonly used in time series clustering studies, the criteria for evaluating the performance of the clustering results, and the measures to determine the similarity/dissimilarity between two time series being compared, either in the forms of raw data, extracted features, or some model parameters. The past researchs are organized into three groups depending upon whether they work directly with the raw data either in the time or frequency domain, indirectly with features extracted from the raw data, or indirectly with models built from the raw data. The uniqueness and limitation of previous research are discussed and several possible topics for future research are identified. Moreover, the areas that time series clustering have been applied to are also summarized, including the sources of data used. It is hoped that this review will serve as the steppingstone for those interested in advancing this area of research.

2,336 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of competitive learning based clustering methods is given and two examples are given to demonstrate the use of the clustering Methods.
Abstract: Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.

273 citations


Cites background or methods from "A modified K-means clustering algor..."

  • ...Given a number of prototypes in RJ , competitive Hebbian learning successively adds connections among them by evaluating input data drawn from P(x)....

    [...]

  • ...This disadvantage can be remedied by a modified C-means (Wilpon & Rabiner, 1985)....

    [...]

PatentDOI
TL;DR: In this paper, a method for deriving acoustic word representations for use in speech recognition is presented, which involves using dynamic programming to derive a corresponding initial sequence of probabilistic acoustic sub-models for the word independently of any previously derived acoustic model particular to the word.
Abstract: A method is provided for deriving acoustic word representations for use in speech recognition Initial word models are created, each formed of a sequence of acoustic sub-models The acoustic sub-models from a plurality of word models are clustered, so as to group acoustically similar sub-models from different words, using, for example, the Kullback-Leibler information as a metric of similarity Then each word is represented by cluster spelling representing the clusters into which its acoustic sub-models were placed by the clustering Speech recognition is performed by comparing sequences of frames from speech to be recognized against sequences of acoustic models associated with the clusters of the cluster spelling of individual word models The invention also provides a method for deriving a word representation which involves receiving a first set of frame sequences for a word, using dynamic programming to derive a corresponding initial sequence of probabilistic acoustic sub-models for the word independently of any previously derived acoustic model particular to the word, using dynamic programming to time align each of a second set of frame sequences for the word into a succession of new sub-sequences corresponding to the initial sequence of models, and using these new sub-sequences to calculate new probabilistic sub-models

257 citations

Journal ArticleDOI
TL;DR: In this paper, a segmental k-means training procedure was used to extract whole-word patterns from naturally spoken word strings, which were then used to create a set of word reference patterns for recognition.
Abstract: Algorithms for recognizing strings of connected words from whole-word patterns have become highly efficient and accurate, although computation rates remain high. Even the most ambitious connected-word recognition task is practical with today's integrated circuit technology, but extracting reliable, robust whole-word reference patterns still is difficult. In the past, connected-word recognizers relied on isolated-word reference patterns or patterns derived from a limited context (e.g., the middle digit from strings of three digits). These whole-word patterns were adequate for slow rates of articulated speech, but not for strings of words spoken at high rates (e.g., about 200 to 300 words per minute). To alleviate this difficulty, a segmental k-means training procedure was used to extract whole-word patterns from naturally spoken word strings. The segmented words are then used to create a set of word reference patterns for recognition. Recognition string accuracies were 98 to 99 percent for digits in variable length strings and 90 to 98 percent for sentences from an airline reservation task. These performance scores represent significant improvements over previous connected-word recognizers.

251 citations

Patent
19 Oct 1988
TL;DR: In this article, a binary decision tree is constructed with true or false questions at each node and a probability distribution of the unknown next event based upon available data at each leaf, and the construction process proceeds from node-to-node towards a leaf by answering the question at each vertex encountered and following either the true or the false path depending upon the answer.
Abstract: In order to determine a next event based upon available data, a binary decision tree is constructed having true or false questions at each node and a probability distribution of the unknown next event based upon available data at each leaf. Starting at the root of the tree, the construction process proceeds from node-to-node towards a leaf by answering the question at each node encountered and following either the true or false path depending upon the answer. The questions are phrased in terms of the available data and are designed to provide as much information as possible about the next unknown event. The process is particularly useful in speech recognition when the next word to be spoken is determined on the basis of the previously spoken words.

205 citations

References
More filters
01 Jan 1967
TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Abstract: The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special

24,320 citations


"A modified K-means clustering algor..." refers methods in this paper

  • ...As a result of these drawbacks in the UWA procedure, a clustering algorithm based on the conventional K-means iteration has been developed [6]....

    [...]

Journal ArticleDOI
S. P. Lloyd1
TL;DR: In this article, the authors derived necessary conditions for any finite number of quanta and associated quantization intervals of an optimum finite quantization scheme to achieve minimum average quantization noise power.
Abstract: It has long been realized that in pulse-code modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as the number of quanta becomes infinite, the asymptotic fractional density of quanta per unit voltage should vary as the one-third power of the probability density per unit voltage of signal amplitudes. In this paper the corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy. The optimization criterion used is that the average quantization noise power be a minimum. It is shown that the result obtained here goes over into the Panter and Dite result as the number of quanta become large. The optimum quautization schemes for 2^{b} quanta, b=1,2, \cdots, 7 , are given numerically for Gaussian and for Laplacian distribution of signal amplitudes.

11,872 citations

S. P. Lloyd1
01 Jan 1982
TL;DR: The corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy.
Abstract: It has long been realized that in pulse-code modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as the number of quanta becomes infinite, the asymptotic fractional density of quanta per unit voltage should vary as the one-third power of the probability density per unit voltage of signal amplitudes. In this paper the corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy. The optimization criterion used is that the average quantization noise power be a minimum. It is shown that the result obtained here goes over into the Panter and Dite result as the number of quanta become large. The optimum quautization schemes for 2^{b} quanta, b=1,2, \cdots, 7 , are given numerically for Gaussian and for Laplacian distribution of signal amplitudes.

9,602 citations

Journal ArticleDOI
TL;DR: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data.
Abstract: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data. The basic properties of the algorithm are discussed and demonstrated by examples. Quite general distortion measures and long blocklengths are allowed, as exemplified by the design of parameter vector quantizers of ten-dimensional vectors arising in Linear Predictive Coded (LPC) speech compression with a complicated distortion measure arising in LPC analysis that does not depend only on the error vector.

7,935 citations

Journal ArticleDOI
F. Itakura1
TL;DR: A computer system is described in which isolated words, spoken by a designated talker, are recognized through calculation of a minimum prediction residual through optimally registering the reference LPC onto the input autocorrelation coefficients using the dynamic programming algorithm.
Abstract: A computer system is described in which isolated words, spoken by a designated talker, are recognized through calculation of a minimum prediction residual. A reference pattern for each word to be recognized is stored as a time pattern of linear prediction coefficients (LPC). The total log prediction residual of an input signal is minimized by optimally registering the reference LPC onto the input autocorrelation coefficients using the dynamic programming algorithm (DP). The input signal is recognized as the reference word which produces the minimum prediction residual. A sequential decision procedure is used to reduce the amount of computation in DP. A frequency normalization with respect to the long-time spectral distribution is used to reduce effects of variations in the frequency response of telephone connections. The system has been implemented on a DDP-516 computer for the 200-word recognition experiment. The recognition rate for a designated male talker is 97.3 percent for telephone input, and the recognition time is about 22 times real time.

1,588 citations