scispace - formally typeset
Search or ask a question
Proceedings Article

A morphable model for the synthesis of 3D faces

01 Jan 1999-
About: This article is published in International Conference on Computer Graphics and Interactive Techniques.The article was published on 1999-01-01 and is currently open access. It has received 2010 citations till now.
Citations
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations


Cites background from "A morphable model for the synthesis..."

  • ...19: 3D morphable face model (Blanz and Vetter 1999): (a) original 3D face model with the addition of shape and texture variations in deviation from mean (caricature), gender, expression, weight, or facial appearance; (b) a 3D morphable model is fit to a single image, after which it’s weight and/or expression can be manipulated; (c) another example of a 3D reconstruction along with a different set of 3D manipulations such as lighting or pose change....

    [...]

  • ...19, it is then possible to fit morphable 3D models to just single images and to use such models for a variety of animation and visual effects (Blanz and Vetter 1999)....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections, using computer graphics.
Abstract: This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction of the morphable model, an algorithm to fit the model to images, and a framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET database.

2,187 citations


Additional excerpts

  • ...Index Terms—Face recognition, shape estimation, deformable model, 3D faces, pose invariance, illumination invariance....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that the suggested model can enable a model of object recognition in cortex to expand from recognizing individual objects in isolation to sequentially recognizing all objects in a more complex scene.

1,269 citations


Cites methods from "A morphable model for the synthesis..."

  • ...To test attentional modulation of object recognition beyond paper clips, we also tested stimuli consisting of synthetic faces rendered from 3D models, which were obtained by scanning the faces of human subjects (Vetter & Blanz, 1999)....

    [...]

Proceedings ArticleDOI
02 Sep 2009
TL;DR: This paper publishes a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrates its application to several face recognition task and publishes a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.
Abstract: Generative 3D face models are a powerful tool in computer vision. They provide pose and illumination invariance by modeling the space of 3D faces and the imaging process. The power of these models comes at the cost of an expensive and tedious construction process, which has led the community to focus on more easily constructed but less powerful models. With this paper we publish a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrate its application to several face recognition task. We improve on previous models by offering higher shape and texture accuracy due to a better scanning device and less correspondence artifacts due to an improved registration algorithm. The same 3D face model can be fit to 2D or 3D images acquired under different situations and with different sensors using an analysis by synthesis method. The resulting model parameters separate pose, lighting, imaging and identity parameters, which facilitates invariant face recognition across sensors and data sets by comparing only the identity parameters. We hope that the availability of this registered face model will spur research in generative models. Together with the model we publish a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.

1,265 citations

Proceedings ArticleDOI
01 Jul 2000
TL;DR: A method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint and demonstrates the technique with synthetic renderings of a person's face under novel illumination and viewpoints.
Abstract: We present a method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint. We first acquire images of the face from a small set of viewpoints under a dense sampling of incident illumination directions using a light stage. We then construct a reflectance function image for each observed image pixel from its values over the space of illumination directions. From the reflectance functions, we can directly generate images of the face from the original viewpoints in any form of sampled or computed illumination. To change the viewpoint, we use a model of skin reflectance to estimate the appearance of the reflectance functions for novel viewpoints. We demonstrate the technique with synthetic renderings of a person's face under novel illumination and viewpoints.

1,102 citations


Cites background from "A morphable model for the synthesis..."

  • ...A light field parameterized in this form induces a five-dimensional light field in the space outside of A: if we follow the ray beginning at (x; y; z) in the direction of ( ; ) until it intersects A at (u; v), we have P (x; y; z; ; ) = P 0(u; v; ; )....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections, using computer graphics.
Abstract: This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction of the morphable model, an algorithm to fit the model to images, and a framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET database.

2,187 citations

Proceedings ArticleDOI
02 Sep 2009
TL;DR: This paper publishes a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrates its application to several face recognition task and publishes a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.
Abstract: Generative 3D face models are a powerful tool in computer vision. They provide pose and illumination invariance by modeling the space of 3D faces and the imaging process. The power of these models comes at the cost of an expensive and tedious construction process, which has led the community to focus on more easily constructed but less powerful models. With this paper we publish a generative 3D shape and texture model, the Basel Face Model (BFM), and demonstrate its application to several face recognition task. We improve on previous models by offering higher shape and texture accuracy due to a better scanning device and less correspondence artifacts due to an improved registration algorithm. The same 3D face model can be fit to 2D or 3D images acquired under different situations and with different sensors using an analysis by synthesis method. The resulting model parameters separate pose, lighting, imaging and identity parameters, which facilitates invariant face recognition across sensors and data sets by comparing only the identity parameters. We hope that the availability of this registered face model will spur research in generative models. Together with the model we publish a set of detailed recognition and reconstruction results on standard databases to allow complete algorithm comparisons.

1,265 citations

Proceedings ArticleDOI
01 Jul 2000
TL;DR: A method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint and demonstrates the technique with synthetic renderings of a person's face under novel illumination and viewpoints.
Abstract: We present a method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint. We first acquire images of the face from a small set of viewpoints under a dense sampling of incident illumination directions using a light stage. We then construct a reflectance function image for each observed image pixel from its values over the space of illumination directions. From the reflectance functions, we can directly generate images of the face from the original viewpoints in any form of sampled or computed illumination. To change the viewpoint, we use a model of skin reflectance to estimate the appearance of the reflectance functions for novel viewpoints. We demonstrate the technique with synthetic renderings of a person's face under novel illumination and viewpoints.

1,102 citations