scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN

20 Dec 2021-Construction and Building Materials (Elsevier)-Vol. 312, pp 125385
TL;DR: Wang et al. as discussed by the authors proposed a multi-defect detection system based on StyleGAN-SDM and fusion CNN for sewer pipelines, which integrates StyleGAN v2 and sharpness discrimination model (SDM) to automatically select clear images.
About: This article is published in Construction and Building Materials.The article was published on 2021-12-20 and is currently open access. It has received 15 citations till now. The article focuses on the topics: Deep learning & Convolutional neural network.
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed an efficient and robust sewer defect localization framework motivated by the state-of-the-art detection transformer (DETR) architecture, which views object localization as a set prediction topic.

30 citations

Journal ArticleDOI
TL;DR: A small sample gear face defect detection method based on a Deep convolutional Generative Adversarial Network (DCGAN) and a lightweight Convolutional Neural Network (CNN) in this paper which achieves a high score and is better than that of the classic Vgg11 network model.
Abstract: Online defect detection in small industrial parts is of paramount importance for building closed loop intelligent manufacturing systems. However, high-efficiency and high-precision detection of surface defects in these manufacturing systems is a difficult task and poses a major research challenge. The small sample size of industrial parts available for training machine learning algorithms and the low accuracy of computer vision-based inspection algorithms are the bottlenecks that restrict the development of efficient online defect detection technology. To address these issues, we propose a small sample gear face defect detection method based on a Deep Convolutional Generative Adversarial Network (DCGAN) and a lightweight Convolutional Neural Network (CNN) in this paper. Initially, we perform data augmentation by using DCGAN and traditional data enhancement methods which effectively increase the size of the training data. In the next stage, we perform defect classification by using a lightweight CNN model which is based on the state-of-the-art Vgg11 network. We introduce the Leaky ReLU activation function and a dropout layer in the proposed CNN. In the experimental evaluation, the proposed framework achieves a high score of 98.40%, which is better than that of the classic Vgg11 network model. The method proposed in this paper is helpful for the detection of defects in industrial parts when the available sample size for training is small.

16 citations

Journal ArticleDOI
01 Oct 2022-Sensors
TL;DR: Wang et al. as mentioned in this paper proposed an automatic defect detection system for petrochemical pipeline based on Cycle-GAN and improved YOLO v5, with the average precision and recall as 93.10% and 90.96%, respectively.
Abstract: Defect detection of petrochemical pipelines is an important task for industrial production safety. At present, pipeline defect detection mainly relies on closed circuit television method (CCTV) to take video of the pipeline inner wall and then detect the defective area manually, so the detection is very time-consuming and has a high rate of false and missed detections. To solve the above issues, we proposed an automatic defect detection system for petrochemical pipeline based on Cycle-GAN and improved YOLO v5. Firstly, in order to create the pipeline defect dataset, the original pipeline videos need pre-processing, which includes frame extraction, unfolding, illumination balancing, and image stitching to create coherent and tiled pipeline inner wall images. Secondly, aiming at the problems of small amount of samples and the imbalance of defect and non-defect classes, a sample enhancement strategy based on Cycle-GAN is proposed to generate defect images and expand the data set. Finally, in order to detect defective areas on the pipeline and improve the detection accuracy, a robust defect detection model based on improved YOLO v5 and Transformer attention mechanism is proposed, with the average precision and recall as 93.10% and 90.96%, and the F1-score as 0.920 on the test set. The proposed system can provide reference for operators in pipeline health inspection, improving the efficiency and accuracy of detection.

11 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used an attention-based algorithm for defogging and a generative adversarial network (GAN) for deblurring to improve the sharpness of pipeline images, which achieved the highest mean average precision (mAP) of 92.65% and the fastest speed of 41.23 frames per second (fps).

8 citations

Journal ArticleDOI
TL;DR: In this paper , the stability of the total nitrogen removal efficiency (TNRE) was modeled using an ANN-based binary classification model for the anaerobic ammonium oxidation (AMX) process under saline conditions.

7 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

01 Jan 2007
TL;DR: random forests are proposed, which add an additional layer of randomness to bagging and are robust against overfitting, and the randomForest package provides an R interface to the Fortran programs by Breiman and Cutler.
Abstract: Recently there has been a lot of interest in “ensemble learning” — methods that generate many classifiers and aggregate their results. Two well-known methods are boosting (see, e.g., Shapire et al., 1998) and bagging Breiman (1996) of classification trees. In boosting, successive trees give extra weight to points incorrectly predicted by earlier predictors. In the end, a weighted vote is taken for prediction. In bagging, successive trees do not depend on earlier trees — each is independently constructed using a bootstrap sample of the data set. In the end, a simple majority vote is taken for prediction. Breiman (2001) proposed random forests, which add an additional layer of randomness to bagging. In addition to constructing each tree using a different bootstrap sample of the data, random forests change how the classification or regression trees are constructed. In standard trees, each node is split using the best split among all variables. In a random forest, each node is split using the best among a subset of predictors randomly chosen at that node. This somewhat counterintuitive strategy turns out to perform very well compared to many other classifiers, including discriminant analysis, support vector machines and neural networks, and is robust against overfitting (Breiman, 2001). In addition, it is very user-friendly in the sense that it has only two parameters (the number of variables in the random subset at each node and the number of trees in the forest), and is usually not very sensitive to their values. The randomForest package provides an R interface to the Fortran programs by Breiman and Cutler (available at http://www.stat.berkeley.edu/ users/breiman/). This article provides a brief introduction to the usage and features of the R functions.

14,830 citations