scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach

TL;DR: In this article, an integrated rule-based meta-heuristic optimization approach is used to deal with a multi-level energy management system for a multisource electric vehicle for sharing energy and power between two sources with different characteristics.
About: This article is published in Applied Energy.The article was published on 2013-05-01. It has received 270 citations till now. The article focuses on the topics: Energy source & Energy management system.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive analysis of EMS evolution toward blended mode (BM) and optimal control is presented, providing a thorough survey of the latest progress in optimization-based algorithms and highlights certain contributions that intelligent transportation systems, traffic information, and cloud computing can provide to enhance PHEV energy management.
Abstract: Plug-in hybrid electric vehicles (PHEVs) offer an immediate solution for emissions reduction and fuel displacement within the current infrastructure. Targeting PHEV powertrain optimization, a plethora of energy management strategies (EMSs) have been proposed. Although these algorithms present various levels of complexity and accuracy, they find a limitation in terms of availability of future trip information, which generally prevents exploitation of the full PHEV potential in real-life cycles. This paper presents a comprehensive analysis of EMS evolution toward blended mode (BM) and optimal control, providing a thorough survey of the latest progress in optimization-based algorithms. This is performed in the context of connected vehicles and highlights certain contributions that intelligent transportation systems (ITSs), traffic information, and cloud computing can provide to enhance PHEV energy management. The study is culminated with an analysis of future trends in terms of optimization algorithm development, optimization criteria, PHEV integration in the smart grid, and vehicles as part of the fleet.

559 citations


Cites background from "A multi-level energy management sys..."

  • ...usually expressed in terms of limited iterations and accepted tolerance [62], [64], [66]....

    [...]

  • ...This solution search depends on certain parameters that facilitate getting rid of local minima, although convergence to global optima cannot be generally ensured [64]....

    [...]

  • ...It was developed to solve combinatorial problems, generating competitive solutions when compared with DP in limited simulation time [64], [66]....

    [...]

  • ...The results are validated in simulation environment in [64] and...

    [...]

Journal ArticleDOI
TL;DR: In this article, a RL-based real-time power management strategy for hybrid energy storage system (HESS) in a plug-in hybrid electric vehicle (PHEV) is presented.

377 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the dynamic programming (DP) approach to deal with the integrated optimization problem for deriving the best configuration and energy split strategies of a hybrid energy storage system (HESS), including a battery and a supercapacitor (SC), for an electric city bus.

303 citations

Journal ArticleDOI
TL;DR: This paper analyzes and summarizes the optimization effect of genetic algorithm in various energy management strategies, aiming to analyze and select the optimization rules and parameters, optimization objects and optimization objectives.

302 citations

Journal ArticleDOI
TL;DR: In this article, a real-time energy management strategy for a hybrid energy storage system (HESS), including a battery and a supercapacitor (SC), for an electric city bus was proposed and validated.

300 citations


Cites background from "A multi-level energy management sys..."

  • ...In addition, a good tradeoff between the performance and the circuit complexity and price is achieved because only one DC/DC converter is used....

    [...]

References
More filters
Journal ArticleDOI
13 May 1983-Science
TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Abstract: There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.

41,772 citations

Book
01 Jan 1993
TL;DR: In this paper, the Lagrangian relaxation and dual ascent tree search were used to solve the graph bisection problem and the graph partition problem, and the traveling salesman problem scheduling problems.
Abstract: Part 1 Introduction: combinatorial problems local and global optima heuristics. Part 2 Simulated annealing: the basic method enhancements and modifications applications conclusions. Part 3 Tabu search: the tabu framework broader aspects of intensification and diversification tabu search applications connections and conclusions. Part 4 Genetic algorithms: basic concepts a simple example extensions and modifications applications conclusions. Part 5 Artificial neural networks: neural networks combinatorial optimization problems the graph bisection problem the graph partition problem the travelling salesman problem scheduling problems deformable templates inequality constraints, the Knapsack problem summary. Part 6 Lagrangian relaxation: overview basic methodology Lagrangian heuristics and problem reduction determination of Lagrange multipliers dual ascent tree search applications conclusions. Part 7 Evaluation of heuristic performance: analytical methods empirical testing statistical inference conclusions.

2,571 citations

Book
26 Feb 2018
TL;DR: In this paper, the authors present an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented.
Abstract: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

1,995 citations

Journal ArticleDOI
TL;DR: This paper reviews state-of-the-art ESSs in automotive applications and hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.
Abstract: The fuel efficiency and performance of novel vehicles with electric propulsion capability are largely limited by the performance of the energy storage system (ESS). This paper reviews state-of-the-art ESSs in automotive applications. Battery technology options are considered in detail, with emphasis on methods of battery monitoring, managing, protecting, and balancing. Furthermore, other ESS candidates such as ultracapacitors, flywheels and fuel cells are also discussed. Finally, hybrid power sources are considered as a method of combining two or more energy storage devices to create a superior power source.

982 citations

Journal ArticleDOI
TL;DR: This paper classifies and extensively overviews the state-of-the-art control strategies for HEVs, establishing a basis for comparing available methods and helping devoted researchers choose the right track.
Abstract: As hybrid electric vehicles (HEVs) are gaining more popularity in the market, the rule of the energy management system in the hybrid drivetrain is escalating. This paper classifies and extensively overviews the state-of-the-art control strategies for HEVs. The pros and cons of each approach are discussed. From different perspectives, real-time solutions are qualitatively compared. Finally, a couple of important issues that should be addressed in future development of control strategies are suggested. The benefits of this paper are the following: (1) laying down a foundation for future improvements, (2) establishing a basis for comparing available methods, and (3) helping devoted researchers choose the right track, while avoiding doing that which has already been done.

777 citations