scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A nanotube-based field-emission flat panel display

27 May 1998-Applied Physics Letters (American Institute of Physics)-Vol. 72, Iss: 22, pp 2912-2913
TL;DR: In this paper, a matrix addressable diode flat panel display has been fabricated using a carbon nanotube-epoxy composite as the electron emission source and field-emission uniformity has been confirmed by measuring the I-V curves of pixels across the panel.
Abstract: A matrix addressable diode flat panel display has been fabricated using a carbon nanotube–epoxy composite as the electron emission source. Field-emission uniformity has been confirmed by measuring the I–V curves of pixels across the panel. This prototype display demonstrates well-lit pixels under ±150 V biasing signals. The “on” and “off” of the pixels are well controlled by the half voltage “off-pixel” method. Further improvement of this technology may lead to easy-to-make and inexpensive flat panel displays.
Citations
More filters
Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication under plasma-enhanced hot filament chemical vapor deposition.
Abstract: Free-standing aligned carbon nanotubes have previously been grown above 700°C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666°C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas was used as the carbon source and ammonia gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

2,530 citations

Journal ArticleDOI
TL;DR: In this article, a fully sealed field-emission display 4.5 in. in size has been fabricated using single-wall carbon nanotube (CNT)-organic binders.
Abstract: A fully sealed field-emission display 4.5 in. in size has been fabricated using single-wall carbon nanotube (CNT)-organic binders. The fabricated displays were fully scalable at low temperature, below 415 °C, and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1 V/μm and field emission current of 1.5 mA at 3 V/μm (J=90 μA/cm2) were observed. Brightness of 1800 cd/m2 at 3.7 V/μm was observed on the entire area of a 4.5 in. panel from the green phosphor-indium–tin–oxide glass. The fluctuation of the current was found to be about 7% over a 4.5 in. cathode area.

1,398 citations

Journal ArticleDOI
TL;DR: In this article, the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants was investigated using infrared spectroscopy and transmission electron microscopy (TEM).
Abstract: In the present study, we report the systematic investigation of the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants. The oxidation procedure was characterized by using infrared spectroscopy and transmission electron microscopy (TEM). The SWNTs were produced by chemical vapor deposition (CVD) and oxidized with three kinds of oxidants: (1) nitric acid (2.6 M), (2) a mixture of concentrated sulfuric acid (98 wt %) and concentrated nitric acid (16 M) (v/v = 3/1) and (3) KMnO4. The results reveal that the different functional groups can be introduced when the SWNTs are treated with different oxidants. Refluxing in dilute nitric acid can be considered as a mild oxidation for SWNTs, introducing the carboxylic acid groups only at those initial defects that already exist. The abundance of the carboxylic acid groups generated with this oxidant remained constant along with the treating time. In contrast, sonication of SWNTs in H2SO4/HNO3 increased ...

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of high quality single-walled carbon nanotubes (SWNTs) is accomplished by optimizing the chemical compositions and textural properties of the catalyst material used in the chemical vapor deposition (CVD) of methane.
Abstract: The synthesis of bulk amounts of high quality single-walled carbon nanotubes (SWNTs) is accomplished by optimizing the chemical compositions and textural properties of the catalyst material used in the chemical vapor deposition (CVD) of methane A series of catalysts are derived by systematically varying the catalytic metal compounds and support materials The optimized catalysts consist of Fe/Mo bimetallic species supported on a novel silica−alumina multicomponent material The high SWNT yielding catalyst exhibits high surface-area and large mesopore volume at elevated temperatures Gram quantities of SWNT materials have been synthesized in ∼05 h using the optimized catalyst material The nanotube material consists of individual and bundled SWNTs that are free of defects and amorphous carbon coating This work represents a step forward toward obtaining kilogram scale perfect SWNT materials via simple CVD routes

1,046 citations

Journal ArticleDOI
TL;DR: In this paper, the technical feasibility of various kinds of raw and surface oxidized carbon nanotubes (CNTs) for sorption of divalent metal ions (Cd 2+, Cu 2+, Ni 2+, Pb 2+ and Zn 2+ ) from aqueous solution is reviewed.

944 citations

References
More filters
Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
17 Nov 1995-Science
TL;DR: In this paper, a high-intensity electron gun based on field emission from a film of aligned carbon nanotubes has been made, which consists of a nanotube film with a 1-millimeter-diameter grid about 20 micrometers above it.
Abstract: A high-intensity electron gun based on field emission from a film of aligned carbon nanotubes has been made. The gun consists of a nanotube film with a 1-millimeter-diameter grid about 20 micrometers above it. Field-emission current densities of about 0.1 milliampere per square centimeter were observed for applied voltages as low as 200 volts, and current densities greater than 100 milliamperes per square centimeter have been realized at 700 volts. The gun is air-stable, easy and inexpensive to fabricate, and functions stably and reliably for long times (short-term fluctuations are on the order of 10 percent). The entire gun is only about 0.2 millimeter thick and can be produced with virtually no restrictions on its area, from less than 1 square millimeter to hundreds of square centimeters, making it suitable for flat panel display applications.

3,103 citations

Journal ArticleDOI
15 Sep 1995-Science
TL;DR: Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching, in a process that resembles unraveling the sleeve of a sweater.
Abstract: Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching. Emission currents of 0.1 to 1 microampere were readily obtained at room temperature with bias voltages of less than 80 volts. The emitting structures are concluded to be linear chains of carbon atoms, Cn, (n = 10 to 100), pulled out from the open edges of the graphene wall layers of the nanotube by the force of the electric field, in a process that resembles unraveling the sleeve of a sweater.

1,538 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication of nanotube field emitters with an onset field as low as 0.8 V/μm is described and the low-field electron emission mechanism is discussed.
Abstract: The fabrication of nanotube field emitters with an onset field as low as 0.8 V/μm is described and the low-field electron emission mechanism is discussed. These emitters are made using nanotube cathode deposit with the addition of epoxy resin. The preferred orientation of nanotubes in nanotube bundles of the deposit is preserved. The nanotube tips are sharpened by exposing the nanotube bundle surface to a microwave oxygen plasma. The local-field enhancement factor is estimated to be 8000 by using the Fowler–Nordheim equation. The low onset field is attributed to the well-distributed, highly orientated sharp tips at the sample surface.

431 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the attributes of electron field emission from disordered matrix arrays of carbon nanotubes and found that the emission characteristics are quite reproducible in spite of the disorder, density, and quality variations from sample to sample.
Abstract: The attributes of electron field emission from disordered matrix arrays of carbon nanotubes are studied and found to be quite reproducible in spite of the disorder, density, and quality variations from sample to sample. At low applied electric fields, the electron field emission current-voltage characteristics qualitatively follow conventional Fowler-Nordheim behavior up to a critical current density. However, the current rise at low applied fields is anomalously steep, suggesting that the Fowler-Nordheim model is not sufficient to quantitatively characterize the emission. In the high-field region, the emission characteristics have a more complex behavior. In that regime, the instantaneous field emission is reminiscent of the low-field behavior, but discrete switching events lead to an overall current suppression. We attribute the sudden and well-defined onset of the switching events to interactions between neighboring nanotube tips. By correlating the switching behavior to the current-voltage characteristics, we rule out other physical processes that cause similar effects.

362 citations