scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A new algorithm in spectral analysis and band-limited extrapolation

01 Sep 1975-IEEE Transactions on Circuits and Systems (IEEE)-Vol. 22, Iss: 9, pp 735-742
TL;DR: In this paper, a new algorithm is proposed for computing the transform of a band-limited function, which is a simple iteration involving only the fast Fourier transform (FFT), and it is shown that the effect of noise and the error due to aliasing can be controlled by early termination of the iteration.
Abstract: If only a segment of a function f (t) is given, then its Fourier spectrum F(\omega) is estimated either as the transform of the product of f(t) with a time-limited window w(t) , or by certain techniques based on various a priori assumptions. In the following, a new algorithm is proposed for computing the transform of a band-limited function. The algorithm is a simple iteration involving only the fast Fourier transform (FFT). The effect of noise and the error due to aliasing are determined and it is shown that they can be controlled by early termination of the iteration. The proposed method can also be used to extrapolate bandlimited functions.
Citations
More filters
Journal ArticleDOI
David J. Thomson1
01 Sep 1982
TL;DR: In this article, a local eigenexpansion is proposed to estimate the spectrum of a stationary time series from a finite sample of the process, which is equivalent to using the weishted average of a series of direct-spectrum estimates based on orthogonal data windows to treat both bias and smoothing problems.
Abstract: In the choice of an estimator for the spectrum of a stationary time series from a finite sample of the process, the problems of bias control and consistency, or "smoothing," are dominant. In this paper we present a new method based on a "local" eigenexpansion to estimate the spectrum in terms of the solution of an integral equation. Computationally this method is equivalent to using the weishted average of a series of direct-spectrum estimates based on orthogonal data windows (discrete prolate spheroidal sequences) to treat both the bias and smoothing problems. Some of the attractive features of this estimate are: there are no arbitrary windows; it is a small sample theory; it is consistent; it provides an analysis-of-variance test for line components; and it has high resolution. We also show relations of this estimate to maximum-likelihood estimates, show that the estimation capacity of the estimate is high, and show applications to coherence and polyspectrum estimates.

3,921 citations

Journal ArticleDOI
TL;DR: It is shown that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties, which makes it possible to derive existence, uniqueness, characterization, and stability results in a unified and standardized fashion for a large class of apparently disparate problems.
Abstract: We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation makes it possible to derive existence, uniqueness, characterization, and stability results in a unified and standardized fashion for a large class of apparently disparate problems. Recent results on monotone operator splitting methods are applied to establish the convergence of a forward-backward algorithm to solve the generic problem. In turn, we recover, extend, and provide a simplified analysis for a variety of existing iterative methods. Applications to geometry/texture image decomposition schemes are also discussed. A novelty of our framework is to use extensively the notion of a proximity operator, which was introduced by Moreau in the 1960s.

2,645 citations

Journal ArticleDOI
01 Aug 1997
TL;DR: This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them.
Abstract: Array processing involves manipulation of signals induced on various antenna elements. Its capabilities of steering nulls to reduce cochannel interferences and pointing independent beams toward various mobiles, as well as its ability to provide estimates of directions of radiating sources, make it attractive to a mobile communications system designer. Array processing is expected to play an important role in fulfilling the increased demands of various mobile communications services. Part I of this paper showed how an array could be utilized in different configurations to improve the performance of mobile communications systems, with references to various studies where feasibility of apt array system for mobile communications is considered. This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them. This paper brings together almost all aspects of array signal processing.

2,169 citations

Journal ArticleDOI
TL;DR: A view of the algorithm as a novel optimization method which combines desirable characteristics of both classical optimization and learning-based algorithms is provided and Mathematical results on conditions for uniqueness of sparse solutions are also given.
Abstract: We present a nonparametric algorithm for finding localized energy solutions from limited data. The problem we address is underdetermined, and no prior knowledge of the shape of the region on which the solution is nonzero is assumed. Termed the FOcal Underdetermined System Solver (FOCUSS), the algorithm has two integral parts: a low-resolution initial estimate of the real signal and the iteration process that refines the initial estimate to the final localized energy solution. The iterations are based on weighted norm minimization of the dependent variable with the weights being a function of the preceding iterative solutions. The algorithm is presented as a general estimation tool usable across different applications. A detailed analysis laying the theoretical foundation for the algorithm is given and includes proofs of global and local convergence and a derivation of the rate of convergence. A view of the algorithm as a novel optimization method which combines desirable characteristics of both classical optimization and learning-based algorithms is provided. Mathematical results on conditions for uniqueness of sparse solutions are also given. Applications of the algorithm are illustrated on problems in direction-of-arrival (DOA) estimation and neuromagnetic imaging.

1,864 citations

Journal ArticleDOI
TL;DR: In this article, a projection operator onto a closed convex set in Hilbert space is proposed for image restoration from partial data which permits any number of nonlinear constraints of a certain type to be subsumed automatically.
Abstract: A projection operator onto a closed convex set in Hilbert space is one of the few examples of a nonlinear map that can be defined in simple abstract terms. Moreover, it minimizes distance and is nonexpansive, and therefore shares two of the more important properties of ordinary linear orthogonal projections onto closed linear manifolds. In this paper, we exploit the properties of these operators to develop several iterative algorithms for image restoration from partial data which permit any number of nonlinear constraints of a certain type to be subsumed automatically. Their common conceptual basis is as follows. Every known property of an original image f is envisaged as restricting it to lie in a well-defined closed convex set. Thus, m such properties place f in the intersection E0 = Ei of the corresponding closed convex sets E1,E2,···Em. Given only the projection operators Pi onto the individual Ei's, i = 1 → m, we restore f by recursive means. Clearly, in this approach, the realization of the Pi's in a Hilbert space setting is one of the major synthesis problems. Section I describes the geometrical significance of the three main theorems in considerable detail, and most of the underlying ideas are illustrated with the aid of simple diagrams. Section II presents rules for the numerical implementation of 11 specific projection operators which are found to occur frequently in many signal-processing applications, and the Appendix contains proofs of all the major results.

1,116 citations

References
More filters
Book
01 Jan 1965
TL;DR: This chapter discusses the concept of a Random Variable, the meaning of Probability, and the axioms of probability in terms of Markov Chains and Queueing Theory.
Abstract: Part 1 Probability and Random Variables 1 The Meaning of Probability 2 The Axioms of Probability 3 Repeated Trials 4 The Concept of a Random Variable 5 Functions of One Random Variable 6 Two Random Variables 7 Sequences of Random Variables 8 Statistics Part 2 Stochastic Processes 9 General Concepts 10 Random Walk and Other Applications 11 Spectral Representation 12 Spectral Estimation 13 Mean Square Estimation 14 Entropy 15 Markov Chains 16 Markov Processes and Queueing Theory

13,886 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply the theory developed in the preceding paper to a number of questions about timelimited and bandlimited signals, and find the signals which do the best job of simultaneous time and frequency concentration.
Abstract: The theory developed in the preceding paper1 is applied to a number of questions about timelimited and bandlimited signals. In particular, if a finite-energy signal is given, the possible proportions of its energy in a finite time interval and a finite frequency band are found, as well as the signals which do the best job of simultaneous time and frequency concentration.

2,498 citations

01 Jan 1967

2,053 citations

Book
01 Jan 1962

1,691 citations