scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing

01 May 2011-Astronomy and Astrophysics (EDP Sciences)-Vol. 529
TL;DR: In this article, the authors presented a reconstruction of the total and spectral solar irradiance covering 130nm-10μ m from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution.
Abstract: Context. The variable Sun is the most likely candidate for the natural forcing of past climate changes on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with the solar activity. During the past 10 000 years, the Sun has experienced the substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years – all reconstructions are proportional to the solar activity – there is scientific controversy on the magnitude of solar forcing.Aims. We present a reconstruction of the total and spectral solar irradiance covering 130 nm–10 μ m from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution. Methods. We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10 Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the long-term trend in the solar variability, which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code.Results. We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than the one observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects the climate, is also found to exceed previous estimates.We discuss in detail the assumptions that lead us to this conclusion.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Moinuddin Ahmed1, Kevin J. Anchukaitis2, Kevin J. Anchukaitis3, Asfawossen Asrat4, H. P. Borgaonkar5, Martina Braida6, Brendan M. Buckley2, Ulf Büntgen7, Brian M. Chase8, Brian M. Chase9, Duncan A. Christie10, Duncan A. Christie11, Edward R. Cook2, Mark A. J. Curran12, Mark A. J. Curran13, Henry F. Diaz14, Jan Esper15, Ze-Xin Fan16, Narayan Prasad Gaire17, Quansheng Ge18, Joelle Gergis19, J. Fidel González-Rouco20, Hugues Goosse21, Stefan W. Grab22, Nicholas E. Graham23, Rochelle Graham23, Martin Grosjean24, Sami Hanhijärvi25, Darrell S. Kaufman26, Thorsten Kiefer, Katsuhiko Kimura27, Atte Korhola25, Paul J. Krusic28, Antonio Lara10, Antonio Lara11, Anne-Marie Lézine29, Fredrik Charpentier Ljungqvist28, Andrew Lorrey30, Jürg Luterbacher31, Valérie Masson-Delmotte29, Danny McCarroll32, Joseph R. McConnell33, Nicholas P. McKay26, Mariano S. Morales34, Andrew D. Moy12, Andrew D. Moy13, Robert Mulvaney35, Ignacio A. Mundo34, Takeshi Nakatsuka36, David J. Nash37, David J. Nash22, Raphael Neukom7, Sharon E. Nicholson38, Hans Oerter39, Jonathan G. Palmer40, Jonathan G. Palmer41, Steven J. Phipps41, María Prieto32, Andrés Rivera42, Masaki Sano36, Mirko Severi43, Timothy M. Shanahan44, Xuemei Shao18, Feng Shi, Michael Sigl33, Jason E. Smerdon2, Olga Solomina45, Eric J. Steig46, Barbara Stenni6, Meloth Thamban47, Valerie Trouet48, Chris S. M. Turney41, Mohammed Umer4, Tas van Ommen13, Tas van Ommen12, Dirk Verschuren49, A. E. Viau50, Ricardo Villalba34, Bo Møllesøe Vinther51, Lucien von Gunten, Sebastian Wagner, Eugene R. Wahl14, Heinz Wanner24, Johannes P. Werner31, James W. C. White52, Koh Yasue53, Eduardo Zorita 
Federal Urdu University1, Columbia University2, Woods Hole Oceanographic Institution3, Addis Ababa University4, Indian Institute of Tropical Meteorology5, University of Trieste6, Swiss Federal Institute for Forest, Snow and Landscape Research7, University of Bergen8, University of Montpellier9, University of Chile10, Austral University of Chile11, University of Tasmania12, Australian Antarctic Division13, National Oceanic and Atmospheric Administration14, University of Mainz15, Xishuangbanna Tropical Botanical Garden16, Nepal Academy of Science and Technology17, Chinese Academy of Sciences18, University of Melbourne19, Complutense University of Madrid20, Université catholique de Louvain21, University of the Witwatersrand22, Hydrologic Research Center23, University of Bern24, University of Helsinki25, Northern Arizona University26, Fukushima University27, Stockholm University28, Université Paris-Saclay29, National Institute of Water and Atmospheric Research30, University of Giessen31, Swansea University32, Desert Research Institute33, National Scientific and Technical Research Council34, British Antarctic Survey35, Nagoya University36, University of Brighton37, Florida State University38, Alfred Wegener Institute for Polar and Marine Research39, University of Exeter40, University of New South Wales41, Centro de Estudios Científicos42, University of Florence43, University of Texas at Austin44, Russian Academy of Sciences45, University of Washington46, National Centre for Antarctic and Ocean Research47, University of Arizona48, Ghent University49, University of Ottawa50, University of Copenhagen51, University of Colorado Boulder52, Shinshu University53
TL;DR: The authors reconstructed past temperatures for seven continental-scale regions during the past one to two millennia and found that the most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century.
Abstract: Past global climate changes had strong regional expression To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years

885 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a global overview of the current understanding of the sunspot number calibration process and present a series of dedicated Sunspot number workshops, including the Sunspot Number Workshops.
Abstract: Our knowledge of the long-term evolution of solar activity and of its primary modulation, the 11-year cycle, largely depends on a single direct observational record: the visual sunspot counts that retrace the last 4 centuries, since the invention of the astronomical telescope. Currently, this activity index is available in two main forms: the International Sunspot Number initiated by R. Wolf in 1849 and the Group Number constructed more recently by Hoyt and Schatten (Sol. Phys. 179:189–219, 1998a, 181:491–512, 1998b). Unfortunately, those two series do not match by various aspects, inducing confusions and contradictions when used in crucial contemporary studies of the solar dynamo or of the solar forcing on the Earth climate. Recently, new efforts have been undertaken to diagnose and correct flaws and biases affecting both sunspot series, in the framework of a series of dedicated Sunspot Number Workshops. Here, we present a global overview of our current understanding of the sunspot number calibration.

460 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the approach taken in defining the scenarios used in the PMIP3, document the forcing reconstructions and discuss likely implications and discuss the likely implications.
Abstract: Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.

452 citations


Cites background from "A new approach to the long-term rec..."

  • ...20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 Lean (2009) Lean (2000) Krivova et al (2010) Shapiro et al (2011) Wavelength (nm) R el at iv e m ag ni tu de UV Visible 400 Fig....

    [...]

  • ...…of the % change in solar spectral irradiance (SSI) at each wavelength to the % change in TSI for 4 separate estimates (Lean, 2000, 2009; Krivova et al., 2010; Shapiro et al., 2011) (cf. Fig 7 in Schmidt et al. (2011)). with the absolute size of the changes in the TSI in each reconstruction)....

    [...]

  • ...Note: DB = Delaygue and Bard (2011), MEA = Muscheler et al. (2007), PMOD = Fröhlich (2009), SBF = Steinhilber et al. (2009), SEA = Shapiro et al. (2011), VSK = Vieira et al. (2011), WLS = Wang et al. (2005)....

    [...]

  • ...4 that the inclusion of the Shapiro et al. (2011) results makes the potential envelope of solar radiative forcing much larger than previously (cf....

    [...]

  • ...20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 Lean (2009) Lean (2000) Krivova et al (2010) Shapiro et al (2011) Regression of ∆% SSI w.r.t. ∆% TSI Wavelength (nm) R el at iv e m ag ni tu de UV Visible 400 Fig....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a global overview of the current understanding of the sunspot number calibration and propose an epochal revision of the Sunspot Number, the first one since Wolf himself, and its reconciliation with the Group Number, a long-awaited modernization that will feed solar cycle research into the 21st century.
Abstract: Our knowledge of the long-term evolution of solar activity and of its primary modulation, the 11-year cycle, largely depends on a single direct observational record: the visual sunspot counts that retrace the last 4 centuries, since the invention of the astronomical telescope. Currently, this activity index is available in two main forms: the International Sunspot Number initiated by R. Wolf in 1849 and the Group Number constructed more recently by Hoyt and Schatten (1998a,b). Unfortunately, those two series do not match by various aspects, inducing confusions and contradictions when used in crucial contemporary studies of the solar dynamo or of the solar forcing on the Earth climate. Recently, new efforts have been undertaken to diagnose and correct flaws and biases affecting both sunspot series, in the framework of a series of dedicated Sunspot Number Workshops. Here, we present a global overview of our current understanding of the sunspot number calibration. While the early part of the sunspot record before 1800 is still characterized by large uncertainties due to poorly observed periods, the more recent sunspot numbers are mainly affected by three main inhomogeneities: in 1880-1915 for the Group Number and in 1947 and 1980-2014 for the Sunspot Number. The newly corrected series clearly indicates a progressive decline of solar activity before the onset of the Maunder Minimum, while the slowly rising trend of the activity after the Maunder Minimum is strongly reduced, suggesting that by the mid 18th century, solar activity had already returned to the level of those observed in recent solar cycles in the 20th century. We finally conclude with future prospects opened by this epochal revision of the Sunspot Number, the first one since Wolf himself, and its reconciliation with the Group Number, a long-awaited modernization that will feed solar cycle research into the 21st century.

426 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed overview of existing solar spectral irradiance (SSI) measurements and a comparison of models available to date is presented, along with a comprehensive approach for an issue that is usually addressed separately by different communities.
Abstract: The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.

334 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Journal ArticleDOI
TL;DR: In this paper, the solution of the non-LTE optically thick transfer equations for hydrogen, carbon, and other constituents to determine semi-empirical models for six components of the quiet solar chromosphere was investigated.
Abstract: The described investigation is concerned with the solution of the non-LTE optically thick transfer equations for hydrogen, carbon, and other constituents to determine semiempirical models for six components of the quiet solar chromosphere. For a given temperature-height distribution, the solution is obtained of the equations of statistical equilibrium, radiative transfer for lines and continua, and hydrostatic equilibrium to find the ionization and excitation conditions for each atomic constituent. The emergent spectrum is calculated, and a trial and error approach is used to adjust the temperature distribution so that the emergent spectrum is in best agreement with the observed one. The relationship between semiempirical models determined in this way and theoretical models based on radiative equilibrium is discussed by Avrett (1977). Harvard Skylab EUV observations are used to determine models for a number of quiet-sun regions.

2,205 citations


"A new approach to the long-term rec..." refers background or methods in this paper

  • ...The four main components of the quiet Sun (Vernazza et al. 1981; Fontenla et al. 1999) are: component A (faint supergranule cell interior),component C (average supergranule cell interior), component E(average network or quiet network), and component F (bright network)....

    [...]

  • ...The choice of model A introduces an uncertainty of the order of 30%, which is estimated by comparing model A to other possible candidates for the minimum state of the quiet Sun, e.g., model B from Vernazza et al. (1981)....

    [...]