scispace - formally typeset
Journal ArticleDOI

A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method

Long Wen, +3 more
- 01 Jul 2018 - 
- Vol. 65, Iss: 7, pp 5990-5998
Reads0
Chats0
TLDR
A new CNN based on LeNet-5 is proposed for fault diagnosis which can extract the features of the converted 2-D images and eliminate the effect of handcrafted features and has achieved significant improvements.
Abstract
Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.

read more

Citations
More filters
Journal ArticleDOI

Deep learning and its applications to machine health monitoring

TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.
Journal ArticleDOI

Applications of machine learning to machine fault diagnosis: A review and roadmap

TL;DR: A review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective is presented.
Journal ArticleDOI

Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application.

TL;DR: Wang et al. as mentioned in this paper proposed a new intelligent fault diagnosis framework, i.e., deep transfer network (DTN), which generalizes deep learning model to domain adaptation scenario, by extending the marginal distribution adaptation to joint distribution adaptation (JDA).
Journal ArticleDOI

A transfer convolutional neural network for fault diagnosis based on ResNet-50

TL;DR: A new TCNN with the depth of 51 convolutional layers is proposed for fault diagnosis of ResNet-50 and achieves state-of-the-art results, which demonstrates that TCNN(ResNet- 50) outperforms other DL models and traditional methods.
Journal ArticleDOI

A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults

TL;DR: A novel deep adversarial convolutional neural network (DACNN) is proposed, which contributes to making the feature representation robust, boosting the generalization ability of the trained model as well as avoiding overfitting with a small size of labeled samples.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)