scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications

TL;DR: In this paper, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have been demonstrated as promising precursors to create functional nanoporous carbons.
Abstract: Nanoporous carbons possessing high surface area and narrow pore size distribution are among the most important classes of porous materials that are practically utilized in industries. Recently, several metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have been demonstrated as promising precursors to create functional nanoporous carbons. In this highlight article, we briefly review the recent progress in preparation of these novel MOF-derived nanoporous carbons. Some promising applications in energy and environment-related areas and future outlook are also discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: Recent progress on the design, synthesis, and application of OER electrocatalysts based on transition-metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.
Abstract: Increasing energy demands and environment awareness have promoted extensive research on the development of alternative energy conversion and storage technologies with high efficiency and environmental friendliness. Among them, water splitting is very appealing, and is receiving more and more attention. The critical challenge of this renewable-energy technology is to expedite the oxygen evolution reaction (OER) because of its slow kinetics and large overpotential. Therefore, developing efficient electrocatalysts with high catalytic activities is of great importance for high-performance water splitting. In the past few years, much effort has been devoted to the development of alternative OER electrocatalysts based on transition-metal elements that are low-cost, highly efficient, and have excellent stability. Here, recent progress on the design, synthesis, and application of OER electrocatalysts based on transition-metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.

1,270 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent progress in fabricating metal-organic frameworks (MOFs) and MOF-derived nanostructures for electrochemical applications is presented.
Abstract: Metal–organic frameworks (MOFs) have received a lot of attention because of their diverse structures, tunable properties and multiple applications such as gas storage, catalysis and magnetism. Recently, there has been a rapidly growing interest in developing MOF-based materials for electrochemical energy storage. MOFs have proved to be particularly suitable for electrochemical applications because of their tunable chemical composition that can be designed at the molecular level and their highly porous framework in which fast mass transportation of the related species is favorable. In this review, the recent progress in fabricating MOFs and MOF-derived nanostructures for electrochemical applications is presented. The review starts with an introduction of the principles and strategies for designing targeted MOFs followed by a discussion of some novel MOF-derived structures and their potential applications in electrochemical energy storage and conversion. Finally, major challenges in electrochemical energy storage are highlighted and prospective solutions from current progress in MOF-based nanostructure research are given.

1,250 citations

Journal ArticleDOI
Lu Wang1, Yuzhen Han1, Xiao Feng1, Junwen Zhou1, Pengfei Qi1, Bo Wang1 
TL;DR: A broad overview of metal-organic frameworks (MOFs) derived rechargeable lithium ion batteries and supercapacitors can be found in this article, where the authors focus on recent advances.

1,039 citations

Journal ArticleDOI
TL;DR: In this article, the newly emerging metal-organic frameworks (MOFs) built from metal ions and polyfunctional organic ligands have proved to be promising self-sacrificing templates and precursors for preparing various carbon-based nanomaterials, benefiting from their high surface areas, abundant metal/organic species, large pore volumes, and extraordinary tunability of structures and compositions.
Abstract: Carbon-based nanomaterials have been widely used as catalysts or catalyst supports in the chemical industry or for energy or environmental applications due to their fascinating properties. High surface areas, tunable porosity, and functionalization are considered to be crucial to enhance the catalytic performance of carbon-based materials. Recently, the newly emerging metal–organic frameworks (MOFs) built from metal ions and polyfunctional organic ligands have proved to be promising self-sacrificing templates and precursors for preparing various carbon-based nanomaterials, benefiting from their high BET surface areas, abundant metal/organic species, large pore volumes, and extraordinary tunability of structures and compositions. In comparison with other carbon-based catalysts, MOF-derived carbon-based nanomaterials have great advantages in terms of tailorable morphologies and hierarchical porosity and easy functionalization with other heteroatoms and metal/metal oxides, which make them highly efficient as...

992 citations

Journal ArticleDOI
TL;DR: This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics and discusses the fundamental and applied aspects of this two-pronged approach.
Abstract: Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

908 citations

References
More filters
Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Abstract: Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

6,778 citations

Journal ArticleDOI
TL;DR: Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvents.
Abstract: Twelve zeolitic imidazolate frameworks (ZIFs; termed ZIF-1 to -12) have been synthesized as crystals by copolymerization of either Zn(II) (ZIF-1 to -4, -6 to -8, and -10 to -11) or Co(II) (ZIF-9 and -12) with imidazolate-type links. The ZIF crystal structures are based on the nets of seven distinct aluminosilicate zeolites: tetrahedral Si(Al) and the bridging O are replaced with transition metal ion and imidazolate link, respectively. In addition, one example of mixed-coordination imidazolate of Zn(II) and In(III) (ZIF-5) based on the garnet net is reported. Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity (Langmuir surface area = 1,810 m 2 /g), high thermal stability (up to 550°C), and remarkable chemical resistance to boiling alkaline water and organic solvents.

5,512 citations

Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Abstract: "Space—the final frontier." This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

4,599 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Abstract: Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

4,538 citations

Journal ArticleDOI
03 Apr 2009-Science
TL;DR: In this paper, a microporous carbon-supported iron-based catalysts with active sites believed to contain iron cations coordinated by pyridinic nitrogen functionalities in the interstices of graphitic sheets within the micropores was produced.
Abstract: Iron-based catalysts for the oxygen-reduction reaction in polymer electrolyte membrane fuel cells have been poorly competitive with platinum catalysts, in part because they have a comparatively low number of active sites per unit volume. We produced microporous carbon-supported iron-based catalysts with active sites believed to contain iron cations coordinated by pyridinic nitrogen functionalities in the interstices of graphitic sheets within the micropores. We found that the greatest increase in site density was obtained when a mixture of carbon support, phenanthroline, and ferrous acetate was ball-milled and then pyrolyzed twice, first in argon, then in ammonia. The current density of a cathode made with the best iron-based electrocatalyst reported here can equal that of a platinum-based cathode with a loading of 0.4 milligram of platinum per square centimeter at a cell voltage of >/=0.9 volt.

2,762 citations