scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A New Fluid-Chip Co-Design for Digital Microfluidic Biochips Considering Cost Drivers and Design Convergence

01 Oct 2018-Vol. 4, Iss: 4, pp 548-564
TL;DR: This paper aims to propose a fluid-chip co-design methodology in dealing with the consideration of the fluid- chip cost drivers, while reducing the design cycles in between.
Abstract: The design process for digital microfluidic biochips (DMFBs) is becoming more complex due to the growing need for essential bio-protocols. A number of significant fluid- and chip-level synthesis tools have been offered previously for designing an efficient system. Several important cost drivers like bioassay schedule length, total pin count, congestion-free wiring, total wire length, and total layer count together measure the efficiency of the DMFBs. Besides, existing design gaps among the sub-tasks of the fluid and chip level make the design process expensive delaying the time-to-market and increasing the overall cost. In this context, removal of design cycles among the sub-tasks is a prior need to obtain a low-cost and efficient platform. Hence, this paper aims to propose a fluid-chip co-design methodology in dealing with the consideration of the fluid-chip cost drivers, while reducing the design cycles in between. A simulation study considering a number of benchmarks has been presented to observe the performance.
Citations
More filters
Proceedings ArticleDOI
01 Jan 2020
TL;DR: This paper presents a fluid-control co-design considering several important cost-driving issues like minimization of schedule length, control pin count, and wirelength, together with congestion-free and conflict-free wiring.
Abstract: Paper-based digital microfluidic biochips (PDMFBs) are becoming highly effective among the microfluidic platforms due to its low-cost and in-place fabrication. The designed electrodes and wiring can be fabricated on a piece of paper by an inkjet printer and conductive ink containing carbon nanotube particles (CNTs). However, due to induced control interference, the wires cannot pass by an arbitrary electrode. Each wire that is to be routed possesses its conflict electrode group, which must be avoided for a feasible droplet movement. This paper presents a fluid-control co-design considering several important cost-driving issues like minimization of schedule length, control pin count, and wirelength, together with congestion-free and conflict-free wiring. Observably, design gaps exist among the sub-tasks of the fluid-level, control-level, and fluid-control as a whole, due to their separate considerations. It indeed introduces many design cycles lengthening the design process, and thus increases the overall cost. In this context, this work integrates the sub-tasks as a prior need to obtain a low cost and efficient platform. Several benchmarks have been studied to evaluate the performance.

2 citations

Journal ArticleDOI
TL;DR: With increasing effectiveness of flow-based microfluidic biochips in the field of biochemical experiments and point-of-care diagnosis, design automation demands enormous attention to integrate the technology into the design process.
Abstract: With increasing effectiveness of flow-based microfluidic biochips in the field of biochemical experiments and point-of-care diagnosis, design automation demands enormous attention to integrate the ...

1 citations

Journal ArticleDOI
TL;DR: A machine learning-based model is built to predict violation in control design beforehand and accordingly guides the fluid-control codesign to tackle important cost-driving issues while attaining congestion- and conflict-free wiring and effectively eliminates the design cycles producing a low-cost platform.
Abstract: Paper-based digital microfluidic biochips (or P-DMFBs) are becoming highly impelling due to its low-cost and in-place fabrication of electrodes and control wiring on a single piece of paper having an inkjet printer and conductive ink. Despite enormous advantages, several complex design rules also subsist, such as avoidance of induced control interference, minimum separation among the control lines, and congestion-free wiring on a single layer, which is to be correlated leading toward overall feasibility of the design. Several cost raising issues, such as schedule length, control pin count, and wire length, must be considered for attaining a successful fluid-control codesign. Moreover, design gaps exist among the subtasks of the fluid level, control level, and fluid-control design as a whole, which undeniably impose expensive design cycles increasing overall cost. This article builds a machine learning-based model for the pin-constrained P-DMFBs to predict violation in control design beforehand and accordingly guides the fluid-control codesign to tackle important cost-driving issues while attaining congestion- and conflict-free wiring. This model effectively eliminates the design cycles producing a low-cost platform. The predictive model has been evaluated over a balanced data set. Several benchmarks for assessing the performance are studied.

1 citations


Cites background from "A New Fluid-Chip Co-Design for Digi..."

  • ...Like traditional DMFBs, through analyzing the activation sequences, a compatibility graph (Gcom) for a group of electrodes can be acquired [9], [15], where an edge denotes the compatibility between the electrode pairs....

    [...]

  • ...NP-hard [15], [25], [26]) is aimed to assure a higher quality solution of the fluid level, control level, and overall codesign....

    [...]

  • ...If the associated goals for fluid- and control-level tasks are viewed in isolation, a “good” result from a phase may guide to an “unsatisfactory” outcome for the succeeding phases [15]–[17]....

    [...]

  • ...wiring in a microfluidic platform [8], [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: In this article , an attack-tolerant synthesis is proposed with two-way security through integrating attack-detection and attack-recovery from various Denial of Service attacks.
Abstract: A digital microfluidic biochip (DMFB) with cyber-physical adaptation implements complex bio-protocols with high precision and high throughput dealing with safety-critical applications including point-of-care diagnosis, personalized medicine, and drug development. Having integrated sensors with network connectivity, a cyber-physical DMFB is undeniably susceptible to attacks. A number of leading research works are carried out to assess various attacks and their impacts. Several defense mechanisms are developed by arranging on-chip monitoring systems through deployment of checkpoints. As checkpoints are external resources imposing a cost-overhead to the system, a cost-effective detection mechanism is of utmost importance. Moreover, after detecting an attack, an efficient recovery process is imperative to execute the associated bioassay in a vulnerable environment. Here, an attack-tolerant synthesis is proposed with two-way security through integrating attack-detection and attack-recovery from various Denial of Service attacks. Moreover, a selective re-synthesis approach has been introduced to allow multiple recovery steps to be executed simultaneously on the biochip. The recovery strategy is closely coupled with the detection process which makes the system adaptive towards attack-tolerance. Experimental results on several benchmarks demonstrate the efficacy of the proposed two-way attack-tolerance strategy.
References
More filters
Book
15 Mar 2019
TL;DR: An overview of DMFBs is provided and emerging CAD tools for the automated synthesis and optimization ofDMFB designs are described, from fluidic-level synthesis to chip-level design.
Abstract: Advances in droplet-based digital microfluidic biochips (DMFBs) have led to the emergence of biochips for automating laboratory procedures in biochemistry and molecular biology. These devices enable the precise control of microliter of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been involved to build DMFBs efficiently. This paper provides an overview of DMFBs and describes emerging CAD tools for the automated synthesis and optimization of DMFB designs, from fluidic-level synthesis to chip-level design. Design automations are expected to relieve the design burden of manual optimization of bioassays, time-consuming chip designs, and costly testing and maintenance procedures. With the assistance of CAD tools, users can concentrate on the development and abstraction of nanoscale bioassays while leaving chip optimization and implementation details to CAD tools.

7 citations


"A New Fluid-Chip Co-Design for Digi..." refers background or methods in this paper

  • ...The main idea of constructing a compatibility graph is to make use of broadcast pin assignment technique [10]....

    [...]

  • ...the applied voltage) of the electrodes for the synthesized droplet movements [10]....

    [...]

  • ...electrodes can be immediately obtained [10]....

    [...]

Proceedings ArticleDOI
23 Sep 2011
TL;DR: This paper focuses on chiplevel design and discusses related background and two major optimization problems posed by electrode addressing and control pin routing, and shows how CAD tools are involved to automate and optimize the two design problems.
Abstract: Recently, digital microfluidic biochips (DMFBs) have revolutionized many biochemical laboratory procedures and received much attention due to their advantages such as high throughput, automatic control, and low cost. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been involved to build DMFBs efficiently, where a two-stage design flow of fluidic-level synthesis followed by chip-level design are generally applied. Regarding fluidic-level synthesis, many related studies and CAD tools have been well-developed to synthesize the fluidic behaviors efficiently and effectively. However, research findings being highly-concerned with the chip-level design are still critically lacking. In this paper, we shall focus on chiplevel design and discuss related background and two major optimization problems posed by electrode addressing and control pin routing. We show how CAD tools are involved to automate and optimize the two design problems. With this assistance, users can concentrate on the development and abstraction of nanoscale bioassays while leaving chip optimization and implementation details to CAD tools.

5 citations


"A New Fluid-Chip Co-Design for Digi..." refers background in this paper

  • ...After obtaining a minimized schedule, a congestion-free wire routing is to be realized maintaining the permissible total wire length [14], [15]....

    [...]