scispace - formally typeset
Book ChapterDOI

A New Metaheuristic Bat-Inspired Algorithm

23 Apr 2010-pp 65-74

TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.

AbstractMetaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.

...read more


Citations
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation.
Abstract: Algorithms are important tools for solving problems computationally. All computation involves algorithms, and the efficiency of an algorithm largely determines its usefulness. This chapter provides an overview of the fundamentals of algorithms and their links to self-organization, exploration, and exploitation. A brief history of recent nature-inspired algorithms for optimization is outlined in this chapter.

7,424 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.
Abstract: This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces.

5,531 citations

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.
Abstract: The Whale Optimization Algorithm inspired by humpback whales is proposed.The WOA algorithm is benchmarked on 29 well-known test functions.The results on the unimodal functions show the superior exploitation of WOA.The exploration ability of WOA is confirmed by the results on multimodal functions.The results on structural design problems confirm the performance of WOA in practice. This paper proposes a novel nature-inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA), which mimics the social behavior of humpback whales. The algorithm is inspired by the bubble-net hunting strategy. WOA is tested with 29 mathematical optimization problems and 6 structural design problems. Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods. The source codes of the WOA algorithm are publicly available at http://www.alimirjalili.com/WOA.html

3,549 citations

Journal ArticleDOI
TL;DR: The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems and the statistical results show that this algorithm is able to provide very promising and competitive results.
Abstract: In this paper a novel nature-inspired optimization paradigm is proposed called Moth-Flame Optimization (MFO) algorithm. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. Moths fly in night by maintaining a fixed angle with respect to the moon, a very effective mechanism for travelling in a straight line for long distances. However, these fancy insects are trapped in a useless/deadly spiral path around artificial lights. This paper mathematically models this behaviour to perform optimization. The MFO algorithm is compared with other well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems. The statistical results on the benchmark functions show that this algorithm is able to provide very promising and competitive results. Additionally, the results of the real problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces. The paper also considers the application of the proposed algorithm in the field of marine propeller design to further investigate its effectiveness in practice. Note that the source codes of the MFO algorithm are publicly available at http://www.alimirjalili.com/MFO.html.

1,649 citations

Journal ArticleDOI
TL;DR: The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates that this algorithm can highly be effective in solving real problems with constrained and unknown search spaces.
Abstract: This paper proposes a novel population-based optimization algorithm called Sine Cosine Algorithm (SCA) for solving optimization problems. The SCA creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions. Several random and adaptive variables also are integrated to this algorithm to emphasize exploration and exploitation of the search space in different milestones of optimization. The performance of SCA is benchmarked in three test phases. Firstly, a set of well-known test cases including unimodal, multi-modal, and composite functions are employed to test exploration, exploitation, local optima avoidance, and convergence of SCA. Secondly, several performance metrics (search history, trajectory, average fitness of solutions, and the best solution during optimization) are used to qualitatively observe and confirm the performance of SCA on shifted two-dimensional test functions. Finally, the cross-section of an aircraft's wing is optimized by SCA as a real challenging case study to verify and demonstrate the performance of this algorithm in practice. The results of test functions and performance metrics prove that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively. The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates that this algorithm can highly be effective in solving real problems with constrained and unknown search spaces. Note that the source codes of the SCA algorithm are publicly available at http://www.alimirjalili.com/SCA.html .

1,571 citations


References
More filters
Journal ArticleDOI
13 May 1983-Science
TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Abstract: There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.

38,868 citations

01 Jan 1989
TL;DR: This book brings together the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields. Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required.

32,374 citations

Proceedings ArticleDOI
06 Aug 2002
TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.

32,237 citations

Book
01 Jan 1975
TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Abstract: Name of founding work in the area. Adaptation is key to survival and evolution. Evolution implicitly optimizes organisims. AI wants to mimic biological optimization { Survival of the ttest { Exploration and exploitation { Niche nding { Robust across changing environments (Mammals v. Dinos) { Self-regulation,-repair and-reproduction 2 Artiicial Inteligence Some deenitions { "Making computers do what they do in the movies" { "Making computers do what humans (currently) do best" { "Giving computers common sense; letting them make simple deci-sions" (do as I want, not what I say) { "Anything too new to be pidgeonholed" Adaptation and modiication is root of intelligence Some (Non-GA) branches of AI: { Expert Systems (Rule based deduction)

32,115 citations

Book
01 Jan 2002

17,034 citations