scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH☆

01 Mar 1970-Experimental Cell Research (Academic Press)-Vol. 59, Iss: 3, pp 469-478
TL;DR: A rapid isolation procedure for chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts has been developed at a near neutral pH in a simple buffer solution and it is possible to obtain as the desired end product either metaphase chromosomes, intact mitotic equipment, or interphase nuclei by slight modifications of the isolation procedure.
About: This article is published in Experimental Cell Research.The article was published on 1970-03-01. It has received 227 citations till now. The article focuses on the topics: Premature chromosome condensation & Metaphase.
Citations
More filters
Journal ArticleDOI
01 Nov 1977-Cell
TL;DR: A scaffolding model for metaphase chromosome structure is suggested in which a backbone of nonhistone proteins is responsible for the basic shape of metaphase chromosomes, and the scaffold organizes the DNA into loops along its length.

1,016 citations

Journal ArticleDOI
01 Aug 1979-Cell
TL;DR: A model in which the nucleoprotein fiber is folded into loops which are arranged in the Chromatid in radial fashion, in such a way that their bases become the central axis of the chromatid is discussed.

530 citations

BookDOI
01 Jan 1985
TL;DR: In this paper, the authors describe the structure of preribosomes and their role in the pre-rRNA precoding process, and discuss the role of RNA polymerases in the precoding.
Abstract: I. Introduction.- II. Ribosomal Genes.- II. 1. Definitions.- II.2. Ribosomal RNA Genes.- II.2.1. Multiplicity.- II.2.2. Chromosomal Location.- II.2.3. Extrachromosomal rRNA Genes.- II.2.4. Organization and Structure.- II.2.4.1. Saccharomyces cerevisiae.- II.2.4.2. Tetrahymena.- II.2.4.3. Drosophila.- II.2.4.4. Xenopus laevis.- II.2.4.5. Higher Plants.- II.2.4.6. Mammalia.- II.2.5. General Features.- II.3. 5 S rRNA Genes.- II.3.1. Number and Chromosomal Location.- II.3.2. Organization and Structure.- II.4. Ribosomal Protein Genes.- II.5. Synopsis.- III. Transcription of Ribosomal Genes.- III. 1. Components of the Transcription Complex.- III. 1.1. RNA Polymerases.- III. 1.2. Nucleolar rDNA and r-Chromatin.- III.2. The Transcription Process >.- III.2.1. Topology of Primary Pre-rRNA.- III.2.2. Morphology of Transcribed rRNA Genes.- III.2.3. Transcribed and Non-Transcribed r-Chromatin.- III.2.4. Primary Transcripts and Primary Pre-rRNA.- III.2.5. Transcription Initiation and Termination.- III.2.5.1. Initiation.- III.2.5.2. Termination.- III.2.6. Transcription in vitro.- III.3. Transcription of 5 S rRNA Genes.- III.4. Transcription of r-Protein Genes.- III.5. Synopsis.- IV. Maturation of Preribosomes.- IV. 1. Structure of Primary Pre-rRNA.- IV. 1.1. Size and Primary Structure.- IV. 1.2. Modifications.- IV. 1.3. Conformation.- IV.2. Pre-rRNA Maturation Pathways.- IV.2.1. General Considerations.- IV.2.2. Common Pattern of Pre-rRNA Maturation.- IV.2.3. Multiplicity of Maturation Pathways.- IV. 2.4. Enzyme Mechanisms.- IV. 3. Preribosomes: Structure and Maturation.- IV. 4. Synopsis.- V. Molecular Architecture of the Nucleolus.- V. 1. Introduction.- V.2. Nucleolus Organizer.- V. 2.1. Chromosomes.- V.2.2. Interphase Nuclei.- V.3. Fibrillar and Granular Components.- V.3.1. The Fibrillar Component.- V.3.2. The Granular Component.- V.4. The Nucleolus and Other Nuclear Structures.- V.4.1. Nucleolus-Associated Chromatin.- V.4.2. The Junction with the Nuclear Envelope.- V.5. The Nucleolar Matrix.- V.6. Macromolecular Constituents.- V.6.1. DNA and RNA.- V. 6.2. Nucleolar Proteins.- V.6.2.1. General.- V.6.2.2. Ag-NOR Protein(s).- V. 6.2.3. Nucleolar Antigens.- V. 7. Outline.- VI. Regulation.- VI. l. General Considerations.- VI.2. Transscriptional Control.- VI. 2.1. Transitions in the State of Expression of rRNA Genes.- VI. 2.1.1. Inactive r-Chromatin.- VI.2.1.2. Potentialy Active and Transcribed rRNA Genes.- VI.2.2. Control of Transcription Rate.- VI.2.2.1. Role of RNA Polymerase I.- VI.2.2.2. Supply of Nucleoside-5'-Triphosphates...- VI.2.2.3. Role of Protein Synthesis.- VI.3. Posttranscriptional Control.- VI.3.1. Synthesis and Supply of r-Proteins.- VI.3.2. The Role of Pre-rRNA Structure.- VI.3.3. The Role of 5 S rRNA.- VI.3.4. Critical Control Sites.- VI.3.4.1. Alternative Processing Pathways and Intranuclear Degradation of Preribosomes and Ribosomes.- VI.3.4.2. Release From the Nucleolus and Nucleo- Cytoplasmic Transport of Ribosomes.- VI.3.4.3. Turnover of Ribosomes.- VI.4. Autogeneous Regulation of Ribosome Biogenesis in Eukaryotes: A Model.- VI.5. Synopsis.- VII. Ribosome Biogenesis in the Life Cycle of Normal and Cancer Cells.- VII. 1. Nucleologenesis and Nucleololysis.- VII. 1.1. Nucleoli and Ribosome Biogenesis During the Mitotic Cycle.- VII. 1.2. Nucleologenesis.- VII. 1.3. Nuclyeololysis.- VII.2. Inhibition of Ribosome Biogenesis.- VII.2.1. Inhibitors Interacting With DNA and Chromatin.- VII.2.2. Inhibitors That Act on RNA Polymerases.- VII.2.3. Inhibitors of Nucleoside-5'-Triphosphate Formation.- VII.2.4. The Effects of Analogues Incorporated into Polyribonu- cleotide Chains.- VII.2.5. Inhibitors of Protein Synthesis.- VII.2.6. Interpretation of Nucleolar Alterations.- VII.2.6.1. Nucleolar Segregation.- VII.2.6.2. Nucleolar Spherical Bodies and Perichromatin Granules.- VII.2.6.3. Microspherules.- VII.2.6.4. Nucleolar Fragmentation.- VII.3. Growth Transitions.- VII.3.1. Modulation of Growth Rates in Yeasts.- VII.3.2. Activation of Lymphocytes.- VII.3.3. Growth Stimulation of Cultured Cells.- VII.3.4. Differentiation of Myoblasts in Culture.- VII.3.5. Regeneration of Rat Liver.- VII.4. Senescent and Cancer Cells.- VII.4.1. Senscent Cells and Tissues.- VII.4.2. Cancer Cells.- VII.5. Synopsis.- References.

514 citations

Journal ArticleDOI
01 May 1982-Cell
TL;DR: The scaffolding protein pattern that is reproducibly generated following treatment with Cu2+ is composed primarily of two high molecular weight proteins--Sc1 and Sc2 (170,000 and 135,000 daltons).

380 citations


Cites methods from "A new method for the rapid isolatio..."

  • ...the buffer system developed by Wray and Stubblefield (1970). The cells (500 ml) were collected in two tubes by centrifugation (1400 X g, 5 min), washed once in 40 ml/tube with an aqueous buffer (reticulocyte standard buffer) containing 10 mM Tris-IHCI (pH 7....

    [...]

  • ...5 mM CaCI, (Wray and Stubblefield, 1970)....

    [...]

Journal ArticleDOI
TL;DR: A method for improved visualization of radial chromatin loops in undisrupted mitotic chromosomes and a nonhistone protein residual scaffold isolated from nuclease-digested chromosomes under conditions of low salt protein extraction are presented.
Abstract: We have developed procedures for depositing intact mitotic chromosomes and isolated residual scaffolds on electron microscope grids at controlled and reproducible levels of compaction. The chromosomes were isolated using a recently developed aqueous method. Our study has addressed two different aspects of chromosome structure. First, we present a method for improved visualization of radial chromatin loops in undisrupted mitotic chromosomes. Second, we have visualized a nonhistone protein residual scaffold isolated from nuclease-digested chromosomes under conditions of low salt protein extraction. These scaffolds, which have an extremely simple protein composition, are the size of chromosomes, are fibrous in nature, and are found to retain differentiated regions that appear to derive from the kinetochores and the chromatid axis. When our standard preparation conditions were used, the scaffold appearance was found to be very reproducible. If the ionic conditions were varied, however, the scaffold appearance underwent dramatic changes. In the presence of millimolar concentrations of Mg++ or high concentrations of NaCl, the fibrous scaffold protein network was observed to undergo a lateral aggregation or assembly into a coarse meshlike structure. The alteration of scaffold structure was apparently reversible. This observation is consistent with a model in which the scaffolding network plays a dynamic role in chromosome condensation at mitosis.

278 citations

References
More filters
Journal Article
TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.

289,852 citations

Journal ArticleDOI
K. Burton1
TL;DR: The present study arose from the observation that a more intense colour was sometimes produced if, instead of being heated at 1000 for 10 min., the reaction mixture was allowed to stand overnight at room temperature.
Abstract: Of the colour reactions available for the determination and identification of deoxyribonucleic acid (DNA), the reaction with diphenylamine in a mixture of acetic and sulphuric acids at 1000 (Dische, 1930) has been perhaps the most widely used. The present study arose from the observation that a more intense colour was sometimes produced if, instead of being heated at 1000 for 10 min., the reaction mixture was allowed to stand overnight at room temperature. As a result of this observation the procedure has been modified, principally by adding acetaldehyde to the reagents and by allowing the solution to stand for about 17 hr. at 30° instead of heating it at 1000. The modified method is 3-5 times as sensitive as Dische's original procedure, and several substances which interfere in the original method do not do so in the modified procedure. Some observations on the mechanism of the reaction have been made; in particular it was discovered that there is a liberation of inorganic orthophosphate from DNA during the early stages of the reaction. This finding has a bearing on the structure of DNA. The modified method has already been used in an investigation of nucleic acid metabolism during bacteriophage multiplication (Burton, 1955).

13,649 citations

Journal ArticleDOI

2,565 citations

Journal ArticleDOI
TL;DR: It is proposed that Colcemid inhibits mitosis by preventing the formation of certain elements of the mitotic apparatus (perhaps the assembly of continuous spindle filaments) necessary for centriole movement.

205 citations