Posted Content•
A New Wireless Communication Paradigm through Software-controlled Metasurfaces
TL;DR: The HyperSurface tiles as discussed by the authors can effectively re-engineer electromagnetic waves, including steering towards any desired direction, full absorption, polarization manipulation, and more, by using planar meta-materials.
Abstract: Electromagnetic waves undergo multiple uncontrollable alterations as they propagate within a wireless environment. Free space path loss, signal absorption, as well as reflections, refractions and diffractions caused by physical objects within the environment highly affect the performance of wireless communications. Currently, such effects are intractable to account for and are treated as probabilistic factors. The paper proposes a radically different approach, enabling deterministic, programmable control over the behavior of the wireless environments. The key-enabler is the so-called HyperSurface tile, a novel class of planar meta-materials which can interact with impinging electromagnetic waves in a controlled manner. The HyperSurface tiles can effectively re-engineer electromagnetic waves, including steering towards any desired direction, full absorption, polarization manipulation and more. Multiple tiles are employed to coat objects such as walls, furniture, overall, any objects in the indoor and outdoor environments. An external software service calculates and deploys the optimal interaction types per tile, to best fit the needs of communicating devices. Evaluation via simulations highlights the potential of the new concept.
Citations
More filters
TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Abstract: The adoption of a reconfigurable intelligent surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300% higher energy efficiency in comparison with the use of regular multi-antenna amplify-and-forward relaying.
1,967 citations
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.
1,504 citations
Posted Content•
TL;DR: This article addresses the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only.
Abstract: Although the fifth-generation (5G) technologies will significantly improve the spectrum and energy efficiency of today's wireless communication networks, their high complexity and hardware cost as well as increasingly more energy consumption are still crucial issues to be solved. Furthermore, despite that such technologies are generally capable of adapting to the space and time varying wireless environment, the signal propagation over it is essentially random and largely uncontrollable. Recently, intelligent reflecting surface (IRS) has been proposed as a revolutionizing solution to address this open issue, by smartly reconfiguring the wireless propagation environment with the use of massive low-cost, passive, reflective elements integrated on a planar surface. Specifically, different elements of an IRS can independently reflect the incident signal by controlling its amplitude and/or phase and thereby collaboratively achieve fine-grained three-dimensional (3D) passive beamforming for signal enhancement or cancellation. In this article, we provide an overview of the IRS technology, including its main applications in wireless communication, competitive advantages over existing technologies, hardware architecture as well as the corresponding new signal model. We focus on the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only. Furthermore, numerical results are provided to show the potential for significant performance enhancement with the use of IRS in typical wireless network scenarios.
1,316 citations
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.
1,158 citations
TL;DR: A literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks, and the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems.
Abstract: This paper presents a literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks. Conventionally, the network optimization has been limited to transmission control at two endpoints, i.e., end users and network controller. The fading wireless channel is uncontrollable and becomes one of the main limiting factors for performance improvement. The IRS is composed of a large array of scattering elements, which can be individually configured to generate additional phase shifts to the signal reflections. Hence, it can actively control the signal propagation properties in favor of signal reception, and thus realize the notion of a smart radio environment. As such, the IRS’s phase control, combined with the conventional transmission control, can potentially bring performance gain compared to wireless networks without IRS. In this survey, we first introduce basic concepts of the IRS and the realizations of its reconfigurability. Then, we focus on applications of the IRS in wireless communications. We overview different performance metrics and analytical approaches to characterize the performance improvement of IRS-assisted wireless networks. To exploit the performance gain, we discuss the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems. Furthermore, we extend the discussion of IRS-assisted wireless networks to some emerging use cases. Finally, we highlight important practical challenges and future research directions for realizing IRS-assisted wireless networks in beyond 5G communications.
642 citations
References
More filters
TL;DR: The manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber is described, which is constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductor, organic transistors and organic light-emitting diodes.
Abstract: Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber. Using an ionic liquid and jet-milling, we produce long and fine SWNT bundles that can form well-developed conducting networks in the rubber. Conductivity of more than 100 S cm(-1) and stretchability of more than 100% are obtained. Making full use of this extraordinary conductivity, we constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductors, organic transistors and organic light-emitting diodes. The display could be stretched by 30-50% and spread over a hemisphere without any mechanical or electrical damage.
1,616 citations
TL;DR: A survey of current research in the Virtual Network Embedding (VNE) area is presented and a taxonomy of current approaches to the VNE problem is provided and opportunities for further research are discussed.
Abstract: Network virtualization is recognized as an enabling technology for the future Internet. It aims to overcome the resistance of the current Internet to architectural change. Application of this technology relies on algorithms that can instantiate virtualized networks on a substrate infrastructure, optimizing the layout for service-relevant metrics. This class of algorithms is commonly known as "Virtual Network Embedding (VNE)" algorithms. This paper presents a survey of current research in the VNE area. Based upon a novel classification scheme for VNE algorithms a taxonomy of current approaches to the VNE problem is provided and opportunities for further research are discussed.
1,174 citations
TL;DR: It is demonstrated that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two- dimensional graphene layer is integrated.
Abstract: The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 322° at room temperature More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects
842 citations
TL;DR: Diverse electromagnetic responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface and various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated.
Abstract: Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
466 citations
[...]
TL;DR: The state-of-the-art and the potentials of these ten enabling technologies are extensively surveyed, and the challenges and limitations for each technology are treated in depth, while the possible solutions are highlighted.
Abstract: The fifth generation (5G) mobile communication networks will require a major paradigm shift to satisfy the increasing demand for higher data rates, lower network latencies, better energy efficiency, and reliable ubiquitous connectivity. With prediction of the advent of 5G systems in the near future, many efforts and revolutionary ideas have been proposed and explored around the world. The major technological breakthroughs that will bring renaissance to wireless communication networks include (1) a wireless software-defined network, (2) network function virtualization, (3) millimeter wave spectrum, (4) massive MIMO, (5) network ultra-densification, (6) big data and mobile cloud computing, (7) scalable Internet of Things, (8) device-to-device connectivity with high mobility, (9) green communications, and (10) new radio access techniques. In this paper, the state-of-the-art and the potentials of these ten enabling technologies are extensively surveyed. Furthermore, the challenges and limitations for each technology are treated in depth, while the possible solutions are highlighted.
365 citations