scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
About: This article is published in Cell.The article was published on 2017-11-30 and is currently open access. It has received 1943 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: GraphDTI as discussed by the authors is a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system level information on gene expression and protein-protein interactions.
Abstract: Traditional techniqueset identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation p to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug targrotocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drug-target interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through off-target binding, and repositioning opportunities.

6 citations

Journal ArticleDOI
TL;DR: Systems pharmacology is a promising approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning and the computational approaches described in this study could be easily expandable to other disease-gene network analysis.
Abstract: Traditional Chinese medicine (TCM) originated in ancient China has been practiced over thousands of years for treating various symptoms and diseases. However, the molecular mechanisms of TCM in treating these diseases remain unknown. In this study, we employ a systems pharmacology-based approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. We studied 102 TCM components and their target genes by analyzing microarray gene expression experiments. We constructed disease-gene networks from 2558 GWAS studies. We applied a systems pharmacology approach to prioritize disease-target genes. Using this bioinformatics approach, we analyzed 14,713 GWAS disease-TCM-target gene pairs and identified 115 disease-gene pairs with value < 0.2. We validated several of these GWAS disease-TCM-target gene pairs with literature evidence, demonstrating that this computational approach could reveal novel indications for TCM. We also develop TCM-Disease web application to facilitate the traditional Chinese medicine drug repurposing efforts. Systems pharmacology is a promising approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. The computational approaches described in this study could be easily expandable to other disease-gene network analysis.

6 citations


Cites background or methods from "A Next Generation Connectivity Map:..."

  • ...We also queried the TCM gene expression signatures to the latest version of Connectivity Map for potential mechanism of action (MoA) evidence of the TCM against GWAS diseases....

    [...]

  • ...We utilized the latest Connectivity Map (CMap) CLUE web application (https://clue.io) resource for identifying MoA for these TCM components [8, 9]....

    [...]

  • ...Furthermore, the MoA of these TCM against the GWAS disease could be supported by Connectivity Map analysis....

    [...]

  • ...We performed a permutation based testing as below to obtain the nominal p value (P) similar to the approach of Connectivity Map [8, 9]:...

    [...]

  • ...We performed literature and molecular mechanisms evidence by querying PubMed and the Connectivity Map to support the GWAS disease-TCM gene pairs....

    [...]

Posted ContentDOI
20 Jul 2020-bioRxiv
TL;DR: The experimental results show that DeepCE achieves the superior performances not only in de novo chemical setting but also in traditional imputation setting compared to state-of-the-art baselines for the prediction of chemical-induced gene expression.
Abstract: Target-based high-throughput compound screening dominates conventional one-drug-one-gene drug discovery process. However, the readout from the chemical modulation of a single protein is poorly correlated with phenotypic response of organism, leading to high failure rate in drug development. Chemical-induced gene expression profile provides an attractive solution to phenotype-based screening. However, the use of such data is currently limited by their sparseness, unreliability, and relatively low throughput. Several methods have been proposed to impute missing values for gene expression datasets. However, few existing methods can perform de novo chemical compound screening. In this study, we propose a mechanism-driven neural network-based method named DeepCE (Deep Chemical Expression) which utilizes graph convolutional neural network to learn chemical representation and multi-head attention mechanism to model chemical substructure-gene and gene-gene feature associations. In addition, we propose a novel data augmentation method which extracts useful information from unreliable experiments in L1000 dataset. The experimental results show that DeepCE achieves the superior performances not only in de novo chemical setting but also in traditional imputation setting compared to state-of-the-art baselines for the prediction of chemical-induced gene expression. We further verify the effectiveness of gene expression profiles generated from DeepCE by comparing them with gene expression profiles in L1000 dataset for downstream classification tasks including drug-target and disease predictions. To demonstrate the value of DeepCE, we apply it to patient-specific drug repurposing of COVID-19 for the first time, and generate novel lead compounds consistent with clinical evidences. Thus, DeepCE provides a potentially powerful framework for robust predictive modeling by utilizing noisy omics data as well as screening novel chemicals for the modulation of systemic response to disease.

6 citations

Journal ArticleDOI
TL;DR: MoAble as discussed by the authors uses a deep learning-based co-embedding model to map compound signatures and compound structure into the same embedding space and predicts mechanism of actions (MoA) of novel compounds without requiring compound signatures.
Abstract: Motivation Identifying mechanism of actions (MoA) of novel compounds is crucial in drug discovery. Careful understanding of MoA can avoid potential side effects of drug candidates. Efforts have been made to identify MoA using the transcriptomic signatures induced by compounds. However, these approaches fail to reveal MoAs in the absence of actual compound signatures. Results We present MoAble, which predicts MoAs without requiring compound signatures. We train a deep learning-based coembedding model to map compound signatures and compound structure into the same embedding space. The model generates low-dimensional compound signature representation from the compound structures. To predict MoAs, pathway enrichment analysis is performed based on the connectivity between embedding vectors of compounds and those of genetic perturbation. Results show that MoAble is comparable to the methods that use actual compound signatures. We demonstrate that MoAble can be used to reveal MoAs of novel compounds without measuring compound signatures with the same prediction accuracy as that with measuring them. Availability and implementation MoAble is available at https://github.com/dmis-lab/moable. Supplementary information Supplementary data are available at Bioinformatics online.

6 citations

Posted Content
TL;DR: Using a combination of Gaussian processes and abstract network modeling, three fundamentally different machine-learning-based approaches to learn causal relations and synthesize causal networks from high-dimensional time series data are presented.
Abstract: There is an abundance of complex dynamic systems that are critical to our daily lives and our society but that are hardly understood, and even with today's possibilities to sense and collect large amounts of experimental data, they are so complex and continuously evolving that it is unlikely that their dynamics will ever be understood in full detail. Nevertheless, through computational tools we can try to make the best possible use of the current technologies and available data. We believe that the most useful models will have to take into account the imbalance between system complexity and available data in the context of limited knowledge or multiple hypotheses. The complex system of biological cells is a prime example of such a system that is studied in systems biology and has motivated the methods presented in this paper. They were developed as part of the DARPA Rapid Threat Assessment (RTA) program, which is concerned with understanding of the mechanism of action (MoA) of toxins or drugs affecting human cells. Using a combination of Gaussian processes and abstract network modeling, we present three fundamentally different machine-learning-based approaches to learn causal relations and synthesize causal networks from high-dimensional time series data. While other types of data are available and have been analyzed and integrated in our RTA work, we focus on transcriptomics (that is gene expression) data obtained from high-throughput microarray experiments in this paper to illustrate capabilities and limitations of our algorithms. Our algorithms make different but overall relatively few biological assumptions, so that they are applicable to other types of biological data and potentially even to other complex systems that exhibit high dimensionality but are not of biological nature.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data and provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-power gene expression and genomic hybridization experiments.
Abstract: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

10,968 citations

Journal ArticleDOI
TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Abstract: Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences BLAT's speed stems from an index of all nonoverlapping K-mers in the genome This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly BLAT has several major stages It uses the index to find regions in the genome likely to be homologous to the query sequence It performs an alignment between homologous regions It stitches together these aligned regions (often exons) into larger alignments (typically genes) Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible This paper describes how BLAT was optimized Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications http://genomeucscedu hosts a web-based BLAT server for the human genome

8,326 citations

Journal ArticleDOI
TL;DR: This paper proposed parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples.
Abstract: SUMMARY Non-biological experimental variation or “batch effects” are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes (>25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

6,319 citations

Related Papers (5)