scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
About: This article is published in Cell.The article was published on 2017-11-30 and is currently open access. It has received 1943 citations till now.
Citations
More filters
Proceedings ArticleDOI
04 Sep 2019
TL;DR: The proposed human protein complex (HPC) signatures to identify potential drugs for diseases indicates that the proposed method identifies more known drugs, compared with gene signature methods.
Abstract: Drug repositioning approaches are attracting more and more attentions in drug discovery field. Benefiting from the high-throughput gene expression data, many computational drug repositioning approaches use gene signatures to represent diseases and drugs, to identify potential drugs for diseases. Then the gene signature is used to identify potential drugs for a disease. However, the gene signatures do not take the dependencies between genes into account in the development of diseases. In this paper, we proposed human protein complex (HPC) signatures to identify potential drugs for diseases. The human protein complex (HPC) features are identified from the comprehensive resource of mammalian protein complexes (CORUM) database Based on the gene expression values, the HPC expression values are calculated. All the gene expression profiles of diseases and drug perturbations are converted to the profiles of HPCs. The HPC signatures are identified from the profiles and a list of drug candidates is generated. The results of 5 cancers indicate that the proposed method identifies more known drugs, compared with gene signature methods.

3 citations


Cites background from "A Next Generation Connectivity Map:..."

  • ...The expression values of landmark genes are measured directly from the L1000 platform, which can represent approximately 82% information [63]....

    [...]

  • ...Library of Integrated Network-Based Cellular Signatures (LINCS) program was proposed to create a network-based understanding of biology [63]....

    [...]

Posted ContentDOI
31 Mar 2020-bioRxiv
TL;DR: It is shown that sparse regression models that capture sample-sample relationships (termed SampleLASSO), built on-the-fly for each new target sample to be imputed, outperform models based on fixed gene relationships.
Abstract: While there are >2 million publicly-available human microarray gene-expression profiles, these profiles were measured using a variety of platforms that each cover a pre-defined, limited set of genes. Therefore, key to reanalyzing and integrating this massive data collection are methods that can computationally reconstitute the complete transcriptome in partially-measured microarray samples by imputing the expression of unmeasured genes. Current state-of-the-art imputation methods are tailored to samples from a specific platform and rely on gene-gene relationships regardless of the biological context of the target sample. We show that sparse regression models that capture sample-sample relationships (termed SampleLASSO), built on-the-fly for each new target sample to be imputed, outperform models based on fixed gene relationships. Extensive evaluation involving three machine learning algorithms (LASSO, k-nearest-neighbors, and deep-neural-networks), two gene subsets (GPL96-570 and LINCS), and three imputation tasks (within and across microarray/RNA-seq) establishes that SampleLASSO is the most accurate model. Additionally, we demonstrate the biological interpretability of this method by showing that, for imputing a target sample from a certain tissue, SampleLASSO automatically leverages training samples from the same tissue. Thus, SampleLASSO is a simple, yet powerful and flexible approach for harmonizing large-scale gene-expression data.

3 citations


Cites background or methods from "A Next Generation Connectivity Map:..."

  • ...There are currently 1.3 million microarray samples in the LINCS data repository capturing the effect of numerous chemical and genetic perturbations on gene expression (Subramanian et al., 2017)....

    [...]

  • ...For this scenario we used 964 “landmark” genes from LINCS as the measured genes to impute the expression of all the other genes in the genome-scale Affymetrix Human Genome U133 Plus 2.0 Array (15,991 unmeasured genes) (Subramanian et al., 2017; Chen et al., 2016)....

    [...]

  • ...The most prominent example of this effort is the Library of Integrated Network-Based Cellular Signatures (LINCS) microarray program (Subramanian et al., 2017), which has shown that measuring 978 “landmark” genes, costing only $5 per sample (Peck et al., 2006), is sufficient to then use to impute…...

    [...]

Journal ArticleDOI
07 Apr 2021-PLOS ONE
TL;DR: In this article, the authors identify seven biological pathways involved in all 9 fibrotic diseases as well as pathways unique to some of these diseases and suggest captopril and ibuprofen that both appear to slow the progression of fibrosis according to existing bibliographic evidence.
Abstract: Fibrotic diseases cover a spectrum of systemic and organ-specific maladies that affect a large portion of the population, currently without cure. The shared characteristic these diseases feature is their uncontrollable fibrogenesis deemed responsible for the accumulated damage in the susceptible tissues. Idiopathic Pulmonary Fibrosis, an interstitial lung disease, is one of the most common and studied fibrotic diseases and still remains an active research target. In this study we highlight unique and common (i) genes, (ii) biological pathways and (iii) candidate repurposed drugs among 9 fibrotic diseases. We identify 7 biological pathways involved in all 9 fibrotic diseases as well as pathways unique to some of these diseases. Based on our Drug Repurposing results, we suggest captopril and ibuprofen that both appear to slow the progression of fibrotic diseases according to existing bibliography. We also recommend nafcillin and memantine, which haven't been studied against fibrosis yet, for further wet-lab experimentation. We also observe a group of cardiomyopathy-related pathways that are exclusively highlighted for Oral Submucous Fibrosis. We suggest digoxin to be tested against Oral Submucous Fibrosis, since we observe cardiomyopathy-related pathways implicated in Oral Submucous Fibrosis and there is bibliographic evidence that digoxin may potentially clear myocardial fibrosis. Finally, we establish that Idiopathic Pulmonary Fibrosis shares several involved genes, biological pathways and candidate inhibiting-drugs with Dupuytren's Disease, IgG4-related Disease, Systemic Sclerosis and Cystic Fibrosis. We propose that treatments for these fibrotic diseases should be jointly pursued.

3 citations

Journal ArticleDOI
27 Dec 2020-Genes
TL;DR: Wang et al. as mentioned in this paper proposed a module network based drug repositioning (MNBDR) method, which integrated protein-protein interactions and gene expression profile of human, to predict drug candidates for diseases.
Abstract: Drug repurposing/repositioning, which aims to find novel indications for existing drugs, contributes to reducing the time and cost for drug development. For the recent decade, gene expression profiles of drug stimulating samples have been successfully used in drug repurposing. However, most of the existing methods neglect the gene modules and the interactions among the modules, although the cross-talks among pathways are common in drug response. It is essential to develop a method that utilizes the cross-talks information to predict the reliable candidate associations. In this study, we developed MNBDR (Module Network Based Drug Repositioning), a novel method that based on module network to screen drugs. It integrated protein–protein interactions and gene expression profile of human, to predict drug candidates for diseases. Specifically, the MNBDR mined dense modules through protein–protein interaction (PPI) network and constructed a module network to reveal cross-talks among modules. Then, together with the module network, based on existing gene expression data set of drug stimulation samples and disease samples, we used random walk algorithms to capture essential modules in disease development and proposed a new indicator to screen potential drugs for a given disease. Results showed MNBDR could provide better performance than popular methods. Moreover, functional analysis of the essential modules in the network indicated our method could reveal biological mechanism in drug response.

3 citations

01 Jun 2018
TL;DR: DeCoST (Drug Repurposing from Control System Theory) framework is proposed in this article to apply control system paradigm for drug repurposing purpose, which applies biological and pharmaceutical knowledge to quantify rich connective data sources among drugs, genes and diseases to construct disease-specific mathematical model.
Abstract: In this paper, we propose DeCoST (Drug Repurposing from Control System Theory) framework to apply control system paradigm for drug repurposing purpose. Drug repurposing has become one of the most active areas in pharmacology since the last decade. Compared to traditional drug development, drug repurposing may provide more systematic and significantly less expensive approaches in discovering new treatments for complex diseases. Although drug repurposing techniques rapidly evolve from ‘one: disease-gene-drug’ to ‘multi: gene, drug’ and from ‘lazy guilt-by-association’ to ‘systematic model-based pattern matching’, mathematical system and control paradigm has not been widely applied to model the system biology connectivity among drugs, genes, and diseases. In this paradigm, our DeCoST framework, which is among the earliest approaches in drug repurposing with control theory paradigm, applies biological and pharmaceutical knowledge to quantify rich connective data sources among drugs, genes, and diseases to construct disease-specific mathematical model. We use linear–quadratic regulator control technique to assess the therapeutic effect of a drug in disease-specific treatment. DeCoST framework could classify between FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+ (Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil) and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

3 citations

References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data and provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-power gene expression and genomic hybridization experiments.
Abstract: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

10,968 citations

Journal ArticleDOI
TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Abstract: Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences BLAT's speed stems from an index of all nonoverlapping K-mers in the genome This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly BLAT has several major stages It uses the index to find regions in the genome likely to be homologous to the query sequence It performs an alignment between homologous regions It stitches together these aligned regions (often exons) into larger alignments (typically genes) Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible This paper describes how BLAT was optimized Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications http://genomeucscedu hosts a web-based BLAT server for the human genome

8,326 citations

Journal ArticleDOI
TL;DR: This paper proposed parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples.
Abstract: SUMMARY Non-biological experimental variation or “batch effects” are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes (>25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

6,319 citations

Related Papers (5)