scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
About: This article is published in Cell.The article was published on 2017-11-30 and is currently open access. It has received 1943 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The authors discuss proteomics research findings in nephrology and the potential, as well as the limitations, of using proteomics techniques to uncover disease mechanisms and develop new therapeutic strategies.
Abstract: Kidney research is entering an era of ‘big data’ and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology. Technological advances continue to expand the use of proteomics in medicine. In this Review, the authors discuss proteomics research findings in nephrology and the potential, as well as the limitations, of using proteomics techniques to uncover disease mechanisms and develop new therapeutic strategies.

29 citations

Journal ArticleDOI
TL;DR: This study comprehensively evaluated the PRAD stemlike indices based on large cohorts and established a 13-gene based classifier for predicting prognosis or potential strategies for stemness treatment.
Abstract: Prostate cancer stemness (PCS) cells have been reported to drive tumor progression, recurrence and drug resistance. However, there is lacking systematical assessment of stemlike indices and associations with immunological properties in prostate adenocarcinoma (PRAD). We thus collected 7 PRAD cohorts with 1465 men and calculated the stemlike indices for each sample using one-class logistic regression machine learning algorithm. We selected the mRNAsi to quantify the stemlike indices that correlated significantly with prognosis and accordingly identified 21 PCS-related CpG loci and 13 pivotal signature. The 13-gene based PCS model possessed high predictive significance for progression-free survival (PFS) that was trained and validated in 7 independent cohorts. Meanwhile, we conducted consensus clustering and classified the total cohorts into 5 PCS clusters with distinct outcomes. Samples in PCScluster5 possessed the highest stemness fractions and suffered from the worst prognosis. Additionally, we implemented the CIBERSORT algorithm to infer the differential abundance across 5 PCS clusters. The activated immune cells (CD8+ T cell and dendritic cells) infiltrated significantly less in PCScluster5 than other clusters, supporting the negative regulations between stemlike indices and anticancer immunity. High mRNAsi was also found to be associated with up-regulation of immunosuppressive checkpoints, like PDL1. Lastly, we used the Connectivity Map (CMap) resource to screen potential compounds for targeting PRAD stemness, including the top hits of cell cycle inhibitor and FOXM1 inhibitor. Taken together, our study comprehensively evaluated the PRAD stemlike indices based on large cohorts and established a 13-gene based classifier for predicting prognosis or potential strategies for stemness treatment.

29 citations

Journal ArticleDOI
TL;DR: This study adds transcriptional information for 31K compounds of Janssen's primary screening deck using the HT L1000 platform to assess the transcriptional connection score for generating compound similarities, machine learning algorithms for generating target activity predictions, and the scaffold hopping potential of the resulting hits.
Abstract: By adding biological information, beyond the chemical properties and desired effect of a compound, uncharted compound areas and connections can be explored. In this study, we add transcrip...

29 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning can be found in this article.
Abstract: As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define objectives in learning perturbation response in single-cell omics and survey existing approaches, resources, and datasets (https://github.com/theislab/sc-pert).
Abstract: Cell biology is fundamentally limited in its ability to collect complete data on cellular phenotypes and the wide range of responses to perturbation. Areas such as computer vision and speech recognition have addressed this problem of characterizing unseen or unlabeled conditions with the combined advances of big data, deep learning, and computing resources in the past 5 years. Similarly, recent advances in machine learning approaches enabled by single-cell data start to address prediction tasks in perturbation response modeling. We first define objectives in learning perturbation response in single-cell omics; survey existing approaches, resources, and datasets (https://github.com/theislab/sc-pert); and discuss how a perturbation atlas can enable deep learning models to construct an informative perturbation latent space. We then examine future avenues toward more powerful and explainable modeling using deep neural networks, which enable the integration of disparate information sources and an understanding of heterogeneous, complex, and unseen systems.

29 citations

References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data and provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-power gene expression and genomic hybridization experiments.
Abstract: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

10,968 citations

Journal ArticleDOI
TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Abstract: Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences BLAT's speed stems from an index of all nonoverlapping K-mers in the genome This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly BLAT has several major stages It uses the index to find regions in the genome likely to be homologous to the query sequence It performs an alignment between homologous regions It stitches together these aligned regions (often exons) into larger alignments (typically genes) Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible This paper describes how BLAT was optimized Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications http://genomeucscedu hosts a web-based BLAT server for the human genome

8,326 citations

Journal ArticleDOI
TL;DR: This paper proposed parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples.
Abstract: SUMMARY Non-biological experimental variation or “batch effects” are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes (>25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

6,319 citations

Related Papers (5)