scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
About: This article is published in Cell.The article was published on 2017-11-30 and is currently open access. It has received 1943 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The EDCMET project aims to identify novel ED mechanisms of action, to generate (pre)validated test methods to assess the metabolic effects of Eds, and to predict emergent adverse biological phenotypes by following the adverse outcome pathway (AOP) paradigm.
Abstract: Endocrine disruptors (EDs) are defined as chemicals that mimic, block, or interfere with hormones in the body's endocrine systems and have been associated with a diverse array of health issues. The concept of endocrine disruption has recently been extended to metabolic alterations that may result in diseases, such as obesity, diabetes, and fatty liver disease, and constitute an increasing health concern worldwide. However, while epidemiological and experimental data on the close association of EDs and adverse metabolic effects are mounting, predictive methods and models to evaluate the detailed mechanisms and pathways behind these observed effects are lacking, thus restricting the regulatory risk assessment of EDs. The EDCMET (Metabolic effects of Endocrine Disrupting Chemicals: novel testing METhods and adverse outcome pathways) project brings together systems toxicologists; experimental biologists with a thorough understanding of the molecular mechanisms of metabolic disease and comprehensive in vitro and in vivo methodological skills; and, ultimately, epidemiologists linking environmental exposure to adverse metabolic outcomes. During its 5-year journey, EDCMET aims to identify novel ED mechanisms of action, to generate (pre)validated test methods to assess the metabolic effects of Eds, and to predict emergent adverse biological phenotypes by following the adverse outcome pathway (AOP) paradigm.

24 citations


Cites methods from "A Next Generation Connectivity Map:..."

  • ...Abbreviations AhR Aryl hydrocarbon receptor AOP Adverse outcome pathway AR Androgen receptor ATP Adenosine triphosphate BMI Body mass index BPA Bisphenol A CAR Constitutive androstane receptor DDT Dichlorodiphenyltrichloroethane DEHP Bis(2-ethylhexyl) phthalate ED Endocrine disruptor ER Estrogen receptor ERR Estrogen-related receptor FXR Farnesoid X receptor GR Glucocorticoid receptor H2020 Horizon 2020 framework programme HTVS High throughput virtual screening INMA INfancia y Medio Ambiente (Environment and Childhood project) KE Key event KuBiCo Kuopio Birth Cohort LINCS Library of Integrated Network-Based Cellular Signatures LXR Liver X receptor MARCoNI Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction MDC Metabolism disrupting chemical MIE Molecular initiating event MISA Miljøgifter i Svangerskapet og i Ammeperioden (Northern Norway Mother-and-Child contaminant Cohort study) MM_GBSA Molecular mechanics/Generalized Born Surface Area MMP Mitochondrial membrane potential NAFLD Non-alcoholic fatty liver disease NFBC The Northern Finland Birth Cohort NMR Nuclear magnetic resonance NR Nuclear receptor OECD Organisation for Economic Co-operation and Development PBDE Polybrominated diphenyl ether PCB Polychlorinated biphenyl PFOS Perfluorooctanesulfonic acid POP Persistent organic pollutants PPAR Peroxisome proliferator-activated receptor QSAR Quantitative structure-activity relationship RXR Retinoid X receptor T2D Type II diabetes TR Thyroid hormone receptor VDR Vitamin D receptor WHO World Health Organization...

    [...]

  • ...Specifically, DrugMatrix [54], Open TG-GATEs [55], and the Library of Integrated Network-based Cellular Signatures L1000 dataset (LINCS) [56] will be used for the identification of putative molecular mechanisms linking ED MIEs to adverse outcomes....

    [...]

Journal ArticleDOI
TL;DR: The use of artificial intelligence methods for the prediction of potentially causal relationships between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues for the systematic search of new targets in rare diseases.
Abstract: In spite of the abundance of genomic data, predictive models that describe phenotypes as a function of gene expression or mutations are difficult to obtain because they are affected by the curse of dimensionality, given the disbalance between samples and candidate genes. And this is especially dramatic in scenarios in which the availability of samples is difficult, such as the case of rare diseases. The application of multi-output regression machine learning methodologies to predict the potential effect of external proteins over the signaling circuits that trigger Fanconi anemia related cell functionalities, inferred with a mechanistic model, allowed us to detect over 20 potential therapeutic targets. The use of artificial intelligence methods for the prediction of potentially causal relationships between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues for the systematic search of new targets in rare diseases.

24 citations


Cites methods from "A Next Generation Connectivity Map:..."

  • ...For example, the Connectivity Map [91] contains 1 million profiles of cell liens treated with different drugs and has been successfully used for drug repurposing using network analysis [92]....

    [...]

  • ...Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles....

    [...]

Journal ArticleDOI
TL;DR: An approach for cancer gene pathway analysis based on key molecular interactions that drive cancer in relevant tissue types is described, and a focused map of Evolutionarily Selected Pathways (ESP) with interactions supported by both protein–protein binding and genetic epistasis during somatic tumor evolution is assembled.
Abstract: Many recent efforts to analyze cancer genomes involve aggregation of mutations within reference maps of molecular pathways and protein networks. Here, we find these pathway studies are impeded by molecular interactions that are functionally irrelevant to cancer or the patient's tumor type, as these interactions diminish the contrast of driver pathways relative to individual frequently mutated genes. This problem can be addressed by creating stringent tumor-specific networks of biophysical protein interactions, identified by signatures of epistatic selection during tumor evolution. Using such an evolutionarily selected pathway (ESP) map, we analyze the major cancer genome atlases to derive a hierarchical classification of tumor subtypes linked to characteristic mutated pathways. These pathways are clinically prognostic and predictive, including the TP53-AXIN-ARHGEF17 combination in liver and CYLC2-STK11-STK11IP in lung cancer, which we validate in independent cohorts. This ESP framework substantially improves the definition of cancer pathways and subtypes from tumor genome data.

24 citations

Posted ContentDOI
13 Jul 2020-bioRxiv
TL;DR: The successful identification of compounds that display efficacy in blocking SARS-CoV-2 replication based on their ability to counteract the virus-induced transcriptional landscape are demonstrated.
Abstract: To interfere with the biology of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, we focused on restoring the transcriptional response induced by infection. Utilizing expression patterns of SARS-CoV-2-infected cells, we identified a region in gene expression space that was unique to virus infection and inversely proportional to the transcriptional footprint of known compounds characterized in the Library of Integrated Network-based Cellular Signatures. Here we demonstrate the successful identification of compounds that display efficacy in blocking SARS-CoV-2 replication based on their ability to counteract the virus-induced transcriptional landscape. These compounds were found to potently reduce viral load despite having no impact on viral entry or modulation of the host antiviral response in the absence of virus. RNA-Seq profiling implicated the induction of the cholesterol biosynthesis pathway as the underlying mechanism of inhibition and suggested that targeting this aspect of host biology may significantly reduce SARS-CoV-2 viral load.

24 citations

Journal ArticleDOI

23 citations


Cites background from "A Next Generation Connectivity Map:..."

  • ..., 2006) and the Library of Integrated Network-based Cellular Signatures (LINCS; Subramanian et al., 2017; Keenan et al., 2018; Koleti et al., 2018)....

    [...]

  • ...If the transcriptional signature of drug C is inversely correlated to that of disease Y and/or positively correlated to that of drug D, which has been used to treat disease Y, it is likely that drug C may be used to treat disease Y. Representative resources for this approach are the Connectivity Map (Lamb et al., 2006) and the Library of Integrated Network-based Cellular Signatures (LINCS; Subramanian et al., 2017; Keenan et al., 2018; Koleti et al., 2018)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

Journal ArticleDOI
TL;DR: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data and provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-power gene expression and genomic hybridization experiments.
Abstract: The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

10,968 citations

Journal ArticleDOI
TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Abstract: Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences BLAT's speed stems from an index of all nonoverlapping K-mers in the genome This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly BLAT has several major stages It uses the index to find regions in the genome likely to be homologous to the query sequence It performs an alignment between homologous regions It stitches together these aligned regions (often exons) into larger alignments (typically genes) Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible This paper describes how BLAT was optimized Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications http://genomeucscedu hosts a web-based BLAT server for the human genome

8,326 citations

Journal ArticleDOI
TL;DR: This paper proposed parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples.
Abstract: SUMMARY Non-biological experimental variation or “batch effects” are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes (>25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

6,319 citations

Related Papers (5)