A nonsmooth approach to envelope theorems
TL;DR: In this paper, a nonsmooth approach to envelope theorems applicable to a broad class of parameterized constrained nonlinear optimization problems that arise typically in economic applications with nonconvexities and/or non-smooth objectives was developed.
Abstract: We develop a nonsmooth approach to envelope theorems applicable to a broad class of parameterized constrained nonlinear optimization problems that arise typically in economic applications with nonconvexities and/or nonsmooth objectives. Our methods emphasize the role of the Strict Mangasarian–Fromovitz Constraint Qualification (SMFCQ), and include envelope theorems for both the convex and nonconvex case, allow for noninterior solutions as well as equality and inequality constraints. We give new sufficient conditions for the value function to be directionally differentiable, as well as continuously differentiable. We apply our results to stochastic growth models with Markov shocks and constrained lattice programming problems.
...read more
Citations
10 citations
8 citations
6 citations
4 citations
3 citations
References
8,969 citations
4,526 citations
1,976 citations
1,952 citations
1,059 citations