scispace - formally typeset
Proceedings ArticleDOI

A Novel 3D-Unet Deep Learning Framework Based on High-Dimensional Bilateral Grid for Edge Consistent Single Image Depth Estimation

15 Dec 2020-pp 1-8

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the authors develop a deep learning framework DL-ROM (deep learning-reduced order modeling) to create a neural network capable of non-linear projections to reduced order states.
Abstract: Reduced order modeling (ROM) has been widely used to create lower order, computationally inexpensive representations of higher-order dynamical systems. Using these representations, ROMs can efficiently model flow fields while using significantly lesser parameters. Conventional ROMs accomplish this by linearly projecting higher-order manifolds to lower-dimensional space using dimensionality reduction techniques such as proper orthogonal decomposition (POD). In this work, we develop a novel deep learning framework DL-ROM (deep learning—reduced order modeling) to create a neural network capable of non-linear projections to reduced order states. We then use the learned reduced state to efficiently predict future time steps of the simulation using 3D Autoencoder and 3D U-Net-based architectures. Our model DL-ROM can create highly accurate reconstructions from the learned ROM and is thus able to efficiently predict future time steps by temporally traversing in the learned reduced state. All of this is achieved without ground truth supervision or needing to iteratively solve the expensive Navier–Stokes (NS) equations thereby resulting in massive computational savings. To test the effectiveness and performance of our approach, we evaluate our implementation on five different computational fluid dynamics (CFD) datasets using reconstruction performance and computational runtime metrics. DL-ROM can reduce the computational run times of iterative solvers by nearly two orders of magnitude while maintaining an acceptable error threshold.

1 citations


References
More filters
Book ChapterDOI

[...]

05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

28,273 citations

Posted Content

[...]

Sergey Ioffe1, Christian Szegedy1
TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.

17,151 citations

Proceedings ArticleDOI

[...]

01 Jul 2002
TL;DR: A new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail, is presented, based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer.
Abstract: We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the bilateral filter. This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the spatial domain multiplied by an influence function in the intensity domain that decreases the weight of pixels with large intensity differences. We express bilateral filtering in the framework of robust statistics and show how it relates to anisotropic diffusion. We then accelerate bilateral filtering by using a piecewise-linear approximation in the intensity domain and appropriate subsampling. This results in a speed-up of two orders of magnitude. The method is fast and requires no parameter setting.

1,587 citations

Journal ArticleDOI

[...]

01 Aug 2004
TL;DR: This paper presents a simple colorization method that requires neither precise image segmentation, nor accurate region tracking, and demonstrates that high quality colorizations of stills and movie clips may be obtained from a relatively modest amount of user input.
Abstract: Colorization is a computer-assisted process of adding color to a monochrome image or movie The process typically involves segmenting images into regions and tracking these regions across image sequences Neither of these tasks can be performed reliably in practice; consequently, colorization requires considerable user intervention and remains a tedious, time-consuming, and expensive taskIn this paper we present a simple colorization method that requires neither precise image segmentation, nor accurate region tracking Our method is based on a simple premise; neighboring pixels in space-time that have similar intensities should have similar colors We formalize this premise using a quadratic cost function and obtain an optimization problem that can be solved efficiently using standard techniques In our approach an artist only needs to annotate the image with a few color scribbles, and the indicated colors are automatically propagated in both space and time to produce a fully colorized image or sequence We demonstrate that high quality colorizations of stills and movie clips may be obtained from a relatively modest amount of user input

1,311 citations

Proceedings ArticleDOI

[...]

01 Oct 2016
TL;DR: A fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps is proposed and a novel way to efficiently learn feature map up-sampling within the network is presented.
Abstract: This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available.

1,156 citations