scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I – Experimental analysis

TL;DR: In this paper, a survey was conducted to determine exergy-based sustainability parameters of a single cylinder DI diesel engine in response to various fuel blends and engine loads at a fixed engine speed of 1000rpm.
About: This article is published in Fuel.The article was published on 2017-10-01. It has received 183 citations till now. The article focuses on the topics: Diesel fuel & Diesel engine.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the literature from most recent articles on nanoparticles as a liquid fuel additive and discussed the effect of dispersion of several nanoparticles on the enhancement in the performance characteristics and reduction in emission of a CI engine fuelled with diesel-biodiesel blends.

311 citations

Journal ArticleDOI
TL;DR: In this article, the authors comprehensively reviewed biodiesel manufacturing techniques from natural oils and fats using conventional and advanced technologies with an in-depth state-of-the-art focus on the transesterification unit.

294 citations

Journal ArticleDOI
TL;DR: In this article, the effects of various diesel/biodiesel additives including metal-based, oxygenated, antioxidant, cold flow improver, lubricity improver and cetane number improver additives as well as engine operating parameters like engine load, engine speed, EGR, and injection timing on both regulated and non-regulated emissions were discussed.

229 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature on exergetic analysis of the lignocellulose pretreatment process has been presented, focusing on the thermodynamic, economic, and environmental features of the resulting biofuels.

217 citations

Journal ArticleDOI
TL;DR: This paper is devoted to thoroughly reviewing and critically discussing various ML technology applications, with a particular focus on ANN, to solve function approximation, optimization, monitoring, and control problems in biodiesel research.

203 citations

References
More filters
Book
01 May 1988
TL;DR: In this paper, the exergetic efficiency of thermal, chemical, and metallurgical processes is analyzed and the application of the exergy concept to the problem of the economical optimization of complex plants and the implications to the environment of pollution due to external exergy losses.
Abstract: In addition to the exergy analysis of thermal processes, e.g. heat engines and commercial power stations, for which the methods described have been long established, the book considers the chemical and metallurgical process industries. Charts and tables are provided for the determination of the exergy of many typical substances. Examples are drawn from the fields of thermal, chemical and metallurgical engineering and the exergetic efficiency of typical processes is calculated. The book also discusses the application of the exergy concept to the problem of the economical optimization of complex plants and the implications to the environment of pollution due to external exergy losses. An Instructor's Manual is available which contains outline solutions to the problems listed at the end of each chapter.

1,982 citations


"A novel emulsion fuel containing aq..." refers background in this paper

  • ...The standard molar fraction of various chemical species in the reference state was considered according to [28]....

    [...]

Journal ArticleDOI
TL;DR: The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect as mentioned in this paper.
Abstract: Efforts are under way in many countries, including India, to search for suitable alternative diesel fuels that are environment friendly. The need to search for these fuels arises mainly from the standpoint of preserving the global environment and the concern about long-term supplies of conventional hydrocarbon-based diesel fuels. Among the different possible sources, diesel fuels derived from triglycerides (vegetable oils/animal fats) present a promising alternative to substitute diesel fuels. Although triglycerides can fuel diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Fatty acid methyl esters, known as biodiesel, derived from triglycerides by transesterification with methanol have received the most attention. The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect.

1,733 citations

Journal ArticleDOI
TL;DR: This review covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biod diesel, the effects of blending biodiesel with other fuels on fuel properties, alternative uses for biod Diesel, and value-added uses of glycerol.
Abstract: Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel has many important technical advantages over petrodiesel, such as inherent lubricity, low toxicity, derivation from a renewable and domestic feedstock, superior flash point and biodegradability, negligible sulfur content, and lower exhaust emissions. Important disadvantages of biodiesel include high feedstock cost, inferior storage and oxidative stability, lower volumetric energy content, inferior low-temperature operability, and in some cases, higher NO x exhaust emissions. This review covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biodiesel, the influence of biodiesel composition on fuel properties, the influence of blending biodiesel with other fuels on fuel properties, alternative uses for biodiesel, and value-added uses of glycerol, a co-product of biodiesel production. A particular emphasis is placed on alternative feedstocks for biodiesel production. Lastly, future challenges and outlook for biodiesel are discussed.

766 citations

Journal ArticleDOI
01 Jan 2009
TL;DR: A brief review of the classifications of metal combustion based on thermodynamic considerations and the different types of combustion regimes of metal particles (diffusion vs. kinetic control) is presented in this article.
Abstract: Metal combustion has received renewed interest largely as a result of the ability to produce and characterize metallic nanoparticles. Much of the highly desirable traits of nanosized metal powders in combustion systems have been attributed to their high specific surface area (high reactivity) and potential ability to store energy in surfaces. In addition, nanosized powders are known to display increased catalytic activity, superparamagnetic behavior, superplasticity, lower melting temperatures, lower sintering temperatures, and higher theoretical densities compared to micron and larger sized materials. The lower melting temperatures can result in lower ignition temperatures of metals. The combustion rates of materials with nanopowders have been observed to increase significantly over similar materials with micron sized particles. A lower limit in size of nanoenergetic metallic powders in some cases may result from the presence of their passivating oxide coating. Consequently, coatings, self-assembled monolayers (SAMs), and the development of composite materials that limit the volume of non-energetic material in the powders have been under development in recent years. After a brief review of the classifications of metal combustion based on thermodynamic considerations and the different types of combustion regimes of metal particles (diffusion vs. kinetic control), an overview of the combustion of aluminum nanoparticles, their applications, and their synthesis and assembly is presented.

707 citations