scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor

TL;DR: In this article, the superconducting composition of the recently discovered potassium iron selenide was identified as the iron vacancy ordered K0.83(2)Fe1.64(1)Se2 with TC above 30 K.
Abstract: The discovery of cuprate high TC superconductors has inspired the search for unconventional superconductors in magnetic materials. A successful recipe has been to suppress long-range order in a magnetic parent compound by doping or high pressure to drive the material towards a quantum critical point. We report an exception to this rule in the recently discovered potassium iron selenide. The superconducting composition is identified as the iron vacancy ordered K0.83(2)Fe1.64(1)Se2 with TC above 30 K. A novel large moment 3.31 ?B/Fe antiferromagnetic order that conforms to the tetragonal crystal symmetry has an unprecedentedly high ordering temperature TN ? 559 K for a bulk superconductor. Staggeringly polarized electronic density of states is thus suspected, which would stimulate further investigation into superconductivity in a strong spin-exchange field under new circumstances.
Citations
More filters
Journal ArticleDOI
TL;DR: A detailed review of the superconductivity of FePnictide and chalcogenide (FePn/Ch) superconductors can be found in this paper.
Abstract: Kamihara and coworkers' report of superconductivity at ${T}_{c}=26\text{ }\text{ }\mathrm{K}$ in fluorine-doped LaFeAsO inspired a worldwide effort to understand the nature of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors have Fe electrons at the Fermi surface, plus an unusual Fermiology that can change rapidly with doping, which lead to normal and superconducting state properties very different from those in standard electron-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic fluctuations are intimately related in the FePn/Ch, and even coexist in some. Open questions, including the superconducting nodal structure in a number of compounds, abound and are often dependent on improved sample quality for their solution. With ${T}_{c}$ values up to 56 K, the six distinct Fe-containing superconducting structures exhibit complex but often comparable behaviors. The search for correlations and explanations in this fascinating field of research would benefit from an organization of the large, seemingly disparate data set. This review provides an overview, using numerous references, with a focus on the materials and their superconductivity.

1,349 citations

Journal ArticleDOI
TL;DR: In this paper, a spin fluctuation theory and the sign-changing s-wave symmetry of superconducting gap structures was proposed to account for the nonuniversality of the gap structures of FeNictide and chalcogenide superconductors.
Abstract: The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s?) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.Satisfactoriness has to be measured by a multitude of standards, of which some, for aught we know, may fail in any given case; and what is more satisfactory than any alternative in sight, may to the end be a sum of pluses and minuses, concerning which we can only trust that by ulterior corrections and improvements a maximum of the one and a minimum of the other may some day be approached.??????????????????????William James, Meaning of Truth

840 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the properties of Fe-pnictide and chalcogenide superconductors can be explained by considering spin fluctuation theory and accounting for the peculiar electronic structure of these systems coupled with the likely sign-changing s-wave symmetry.
Abstract: The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s\pm) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.

660 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the magnetism arises from both itinerant and localized electrons and that the magnetic states found in iron-based superconductors are more complex than originally thought.
Abstract: The magnetic states found in iron-based superconductors are more complex than originally thought. This Review argues that the magnetism arises from both itinerant and localized electrons.

434 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the advances in the field that have led to higher superconducting transition temperatures in iron-based superconductors and the wide range of materials that are used to form these superconductions.
Abstract: Superconductivity develops in metals upon the formation of a coherent macroscopic quantum state of electron pairs. Iron pnictides and chalcogenides are materials that have high superconducting transition temperatures. In this Review, we describe the advances in the field that have led to higher superconducting transition temperatures in iron-based superconductors and the wide range of materials that are used to form these superconductors. We summarize the essential aspects of the normal state and the mechanism for superconductivity. We emphasize the degree of electron–electron correlations and their manifestation in properties of the normal state. We examine the nature of magnetism, analyse its role in driving the electronic nematicity and discuss quantum criticality at the border of magnetism in the phase diagram. Finally, we review the amplitude and structure of the superconducting pairing, and survey the potential material settings for optimizing superconductivity. Iron-based superconductors display high transition temperatures. The physics behind the unconventional superconductivity of these systems can be investigated by taking into consideration the observed strong electronic correlations and bad-metal behaviour, the nature of their magnetic properties, and the presence of electronic nematicity and of quantum criticalities.

386 citations

References
More filters
Journal ArticleDOI
TL;DR: It is reported that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site and exhibits a trapezoid shape dependence on the F- content.
Abstract: We report that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site. The transition temperature (Tc) exhibits a trapezoid shape dependence on the F- content, with the highest Tc of ∼26 K at ∼11 atom %.

6,643 citations

Journal ArticleDOI
TL;DR: It is argued that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound.
Abstract: We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. This resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.

1,952 citations

Journal ArticleDOI
TL;DR: In this article, the superconductivity of iron-based oxyarsenide Sm[O1-xFx]FeAs was reported, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices.
Abstract: We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.

1,456 citations

Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: The role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds of rare-earth iron-based oxide systems was investigated in this paper.
Abstract: Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-T(c)) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at approximately 137 K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-T(c) copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

1,441 citations

Journal ArticleDOI
TL;DR: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c'='26'K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic.
Abstract: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c = 26 K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic. In short order, ot...

1,373 citations