scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Novel Restorative Pulmonary Valve Conduit: Early Outcomes of Two Clinical Trials.

TL;DR: In this article, the first use of a biorestorative valved conduit (Xeltis pulmonary valve-XPV) in children was reported, based on early follow-up data the valve design was modified; the comparative performance of the two designs at 12 months post-implantation was reported.
Abstract: Objectives: We report the first use of a biorestorative valved conduit (Xeltis pulmonary valve-XPV) in children. Based on early follow-up data the valve design was modified; we report on the comparative performance of the two designs at 12 months post-implantation. Methods: Twelve children (six male) median age 5 (2 to 12) years and weight 17 (10 to 43) kg, had implantation of the first XPV valve design (XPV-1, group 1; 16 mm (n = 5), and 18 mm (n = 7). All had had previous surgery. Based on XPV performance at 12 months, the leaflet design was modified and an additional six children (five male) with complex malformations, median age 5 (3 to 9) years, and weight 21 (14 to 29) kg underwent implantation of the new XPV (XPV-2, group 2; 18 mm in all). For both subgroups, the 12 month clinical and echocardiographic outcomes were compared. Results: All patients in both groups have completed 12 months of follow-up. All are in NYHA functional class I. Seventeen of the 18 conduits have shown no evidence of progressive stenosis, dilation or aneurysm formation. Residual gradients of >40 mm Hg were observed in three patients in group 1 due to kinking of the conduit (n = 1), and peripheral stenosis of the branch pulmonary arteries (n = 2). In group 2, one patient developed rapidly progressive stenosis of the proximal conduit anastomosis, requiring conduit replacement. Five patients in group 1 developed severe pulmonary valve regurgitation (PI) due to prolapse of valve leaflet. In contrast, only one patient in group 2 developed more than mild PI at 12 months, which was not related to leaflet prolapse. Conclusions: The XPV, a biorestorative valved conduit, demonstrated promising early clinical outcomes in humans with 17 of 18 patients being free of reintervention at 1 year. Early onset PI seen in the XPV-1 version seems to have been corrected in the XPV-2, which has led to the approval of an FDA clinical trial. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02700100 and NCT03022708.
Citations
More filters
Journal ArticleDOI
TL;DR: The role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application, and selected recent achievements of tissue engineering using synthetic polymer are outlined to provide insight into how they contribute to the advancement of the field in the near future as discussed by the authors .

29 citations

Journal ArticleDOI
TL;DR: In this paper, the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering, was investigated.

22 citations

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper discusses the key advances and future directions in the field of surgical vascular repair, replacement, and reconstruction, with a focus on the challenges and expected benefits of bioengineering human tissues and blood vessels.
Abstract: Cardiovascular defects, injuries, and degenerative diseases often require surgical intervention and the use of implantable replacement material and conduits. Traditional vascular grafts made of synthetic polymers, animal and cadaveric tissues, or autologous vasculature have been utilized for almost a century with well-characterized outcomes, leaving areas of unmet need for the patients in terms of durability and long-term patency, susceptibility to infection, immunogenicity associated with the risk of rejection, and inflammation and mechanical failure. Research to address these limitations is exploring avenues as diverse as gene therapy, cell therapy, cell reprogramming, and bioengineering of human tissue and replacement organs. Tissue-engineered vascular conduits, either with viable autologous cells or decellularized, are the forefront of technology in cardiovascular reconstruction and offer many benefits over traditional graft materials, particularly in the potential for the implanted material to be adopted and remodeled into host tissue and thus offer safer, more durable performance. This review discusses the key advances and future directions in the field of surgical vascular repair, replacement, and reconstruction, with a focus on the challenges and expected benefits of bioengineering human tissues and blood vessels.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a subcutaneous rat model to compare the tissue response, including macrophage phenotype, remodeling potential, and calcification propensity of a biologic scaffold composed of glutaraldehyde-fixed bovine pericardium (GF-BP), the standard of care for heart valve replacement, with those of an electrospun polycarbonate-based supramolecular polymer scaffold (ePC-UPy), urinary bladder extracellular matrix (UBM-ECM), and a polypropylene mesh (PP).
Abstract: The host immune response to an implanted biomaterial, particularly the phenotype of infiltrating macrophages, is a key determinant of biocompatibility and downstream remodeling outcome. The present study used a subcutaneous rat model to compare the tissue response, including macrophage phenotype, remodeling potential, and calcification propensity of a biologic scaffold composed of glutaraldehyde-fixed bovine pericardium (GF-BP), the standard of care for heart valve replacement, with those of an electrospun polycarbonate-based supramolecular polymer scaffold (ePC-UPy), urinary bladder extracellular matrix (UBM-ECM), and a polypropylene mesh (PP). The ePC-UPy and UBM-ECM materials induced infiltration of mononuclear cells throughout the thickness of the scaffold within 2 days and neovascularization at 14 days. GF-BP and PP elicited a balance of pro-inflammatory (M1-like) and anti-inflammatory (M2-like) macrophages, while UBM-ECM and ePC-UPy supported a dominant M2-like macrophage phenotype at all timepoints. Relative to GF-BP, ePC-UPy was markedly less susceptible to calcification for the 180 day duration of the study. UBM-ECM induced an archetypical constructive remodeling response dominated by M2-like macrophages and the PP caused a typical foreign body reaction dominated by M1-like macrophages. The results of this study highlight the divergent macrophage and host remodeling response to biomaterials with distinct physical and chemical properties and suggest that the rat subcutaneous implantation model can be used to predict in vivo biocompatibility and regenerative potential for clinical application of cardiovascular biomaterials.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4), was evaluated as interposition graft in the rat abdominal aorta.
Abstract: Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.

9 citations

References
More filters
Journal ArticleDOI
28 Nov 1997-Science
TL;DR: 2-ureido-4-pyrimidone that dimerize strongly in a self-complementary array of four cooperative hydrogen bonds were used as the associating end group in reversible self-assembling polymer systems.
Abstract: Units of 2-ureido-4-pyrimidone that dimerize strongly in a self-complementary array of four cooperative hydrogen bonds were used as the associating end group in reversible self-assembling polymer systems. The unidirectional design of the binding sites prevents uncontrolled multidirectional association or gelation. Linear polymers and reversible networks were formed from monomers with two and three binding sites, respectively. The thermal and environmental control over lifetime and bond strength makes many properties, such as viscosity, chain length, and composition, tunable in a way not accessible to traditional polymers. Hence, polymer networks with thermodynamically controlled architectures can be formed, for use in, for example, coatings and hot melts, where a reversible, strongly temperature-dependent rheology is highly advantageous.

2,011 citations

Journal ArticleDOI
TL;DR: In vitro generation of implantable complete living heart valves based on a biomimetic flow culture system that functioned up to 5 months and resembled normal heart valves in microstructure, mechanical properties, and extracellular matrix formation.
Abstract: Background—Previous tissue engineering approaches to create heart valves have been limited by the structural immaturity and mechanical properties of the valve constructs. This study used an in vitro pulse duplicator system to provide a biomimetic environment during tissue formation to yield more mature implantable heart valves derived from autologous tissue. Methods and Results—Trileaflet heart valves were fabricated from novel bioabsorbable polymers and sequentially seeded with autologous ovine myofibroblasts and endothelial cells. The constructs were grown for 14 days in a pulse duplicator in vitro system under gradually increasing flow and pressure conditions. By use of cardiopulmonary bypass, the native pulmonary leaflets were resected, and the valve constructs were implanted into 6 lambs (weight 19±2.8 kg). All animals had uneventful postoperative courses, and the valves were explanted at 1 day and at 4, 6, 8, 16, and 20 weeks. Echocardiography demonstrated mobile functioning leaflets without stenosi...

638 citations

Journal ArticleDOI
TL;DR: The xenogenic collagen matrix of the Synergraft valve elicits a strong inflammatory response in humans which is non-specific early on and is followed by a lymphocyte response, which may indicate manufacturing problems.
Abstract: Objectives: The first tissue engineered decellularized porcine heart valve, Synergrafte (Cryolife Inc., USA) was introduced in Europe as an alternative to conventional biological valves. This is the first report of the rapid failure of these new grafts in a small series. Materials and methods: In 2001, 2 model 500 and 2 model 700 Synergrafte valves were implanted in four male children (age 2.5‐ 11 years) in the right ventricular outflow tract as a root. Two patients had a Ross operation and two had a homograft replacement. Results: The cryopreserved Synergrafte valves appeared macroscopically unremarkable at implantation. Recovery from surgery was uneventful and good valve function was demonstrated postoperatively. Three children died, two suddenly with severely degenerated Synergrafte valves 6 weeks and 1 year after implantation. The third child died on the 7th day due to Synergrafte rupture. Subsequently the fourth graft was explanted prophylactically 2 days after implantation. Macroscopically all four grafts showed severe inflammation starting on the outside (day 2 explant) leading to structural failure (day 7 explant) and severe degeneration of the leaflets and wall (6 weeks and 1 year explant). Histology demonstrated severe foreign body type reaction dominated by neutrophil granulocytes and macrophages in the early explants and a lymphocytic reaction at 1 year. In addition significant calcific deposits were demonstrated at all stages. Surprisingly pre-implant samples of the Synergrafte revealed incomplete decellularization and calcific deposits. No cell repopulation of the porcine matrix occurred. Conclusion: The xenogenic collagen matrix of the Synergrafte valve elicits a strong inflammatory response in humans which is non-specific early on and is followed by a lymphocyte response. Structural failure or rapid degeneration of the graft occurred within 1 year. Calcific deposits before implantation and incomplete decellularization may indicate manufacturing problems. The porcine Synergrafte treated heart valves should not be implanted at this stage and has been stopped. q 2003 Elsevier Science B.V. All rights reserved.

623 citations

Journal ArticleDOI
TL;DR: This preliminary experiment showed that a tissue engineered valve leaflet constructed from its cellular components can function in the pulmonary valve position, and suggested that autograft tissue will probably be superior to allogenic tissue.

464 citations