scispace - formally typeset
Journal ArticleDOI: 10.1007/S43630-021-00021-1

A novel tricationic fullerene C60 as broad-spectrum antimicrobial photosensitizer: mechanisms of action and potentiation with potassium iodide

04 Mar 2021-Photochemical and Photobiological Sciences (Springer International Publishing)-Vol. 20, Iss: 3, pp 327-341
Abstract: A novel amphiphilic photosensitizing agent based on a tricationic fullerene C60 (DMC603+) was efficiently synthesized from its non-charged analogue MMC60. These fullerenes presented strong UV absorptions, with a broad range of less intense absorption up to 710 nm. Both compounds showed low fluorescence emission and were able to photosensitize the production of reactive oxygen species. Furthermore, photodecomposition of l-tryptophan sensitized by both fullerenes indicated an involvement of type II pathway. DMC603+ was an effective agent to produce the photodynamic inactivation (PDI) of Staphylococcus aureus, Escherichia coli and Candida albicans. Mechanistic insight indicated that the photodynamic action sensitized by DMC603+ was mainly mediated by both photoprocesses in bacteria, while a greater preponderance of the type II pathway was found in C. albicans. In presence of potassium iodide, a potentiation of PDI was observed due to the formation of reactive iodine species. Therefore, the amphiphilic DMC603+ can be used as an effective potential broad-spectrum antimicrobial photosensitizer.

... read more

Topics: Photosensitizer (55%), Iodide (50%)
Citations
  More

5 results found


Open accessJournal ArticleDOI: 10.3390/POLYM13142227
06 Jul 2021-Polymers
Abstract: Four formulations have been used to produce different poly(2-hydroxyethyl methacrylate) (PHEMA) thin films, containing singlet oxygen photosensitizer Rose Bengal (RB). The polymers have been characterized employing Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption Spectroscopy. When irradiated with white light (400-700 nm) films generated singlet oxygen (1O2), as demonstrated by the reactivity with 1O2 trap 9,10-dimethylanthracene (DMA). Material with the highest RB loading (polymer A4, 835 nmol RB/g polymer) was able to perform up to ten cycles of DMA oxygenation reactions at high conversion rates (ca. 90%). Polymer A4 was also able to produce the complete eradication of a Pseudomonas aeruginosa planktonic suspension of 8 log10 CFU/mL, when irradiated with white light (total dose 72 J/cm2). The antimicrobial photodynamic effect was remarkably enhanced by adding potassium iodide (100 mM). In such conditions the complete bacterial reduction occurred with a total light dose of 24 J/cm2. Triiodide anion (I3-) generation was confirmed by UV-vis absorption spectroscopy. This species was detected inside the PHEMA films after irradiation and at concentrations ca. 1 M. The generation of this species and its retention in the matrix imparts long-lasting bactericidal effects to the RB@PHEMA polymeric hydrogels. The polymers here described could find potential applications in the medical context, when optimized for their use in everyday objects, helping to prevent bacterial contagion by contact with surfaces.

... read more

Topics: Rose bengal (54%), Photosensitizer (52%), Singlet oxygen (52%) ... read more

1 Citations


Open accessJournal ArticleDOI: 10.3390/MOLECULES26195877
28 Sep 2021-Molecules
Abstract: New porphyrin–Schiff base conjugates bearing one (6) and two (7) basic amino groups were synthesized by condensation between tetrapyrrolic macrocycle-containing amine functions and 4-(3-(N,N-dimethylamino)propoxy)benzaldehyde. This approach allowed us to easily obtain porphyrins substituted by positive charge precursor groups in aqueous media. These compounds showed the typical Soret and four Q absorption bands with red fluorescence emission (ΦF ~ 0.12) in N,N-dimethylformamide. Porphyrins 6 and 7 photosensitized the generation of O2(1Δg) (ΦΔ ~ 0.44) and the photo-oxidation of L-tryptophan. The decomposition of this amino acid was mainly mediated by a type II photoprocess. Moreover, the addition of KI strongly quenched the photodynamic action through a reaction with O2(1Δg) to produce iodine. The photodynamic inactivation capacity induced by porphyrins 6 and 7 was evaluated in Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the photoinactivation of these microorganisms was improved using potentiation with iodide anions. These porphyrins containing basic aliphatic amino groups can be protonated in biological systems, which provides an amphiphilic character to the tetrapyrrolic macrocycle. This effect allows one to increase the interaction with the cell wall, thus improving photocytotoxic activity against microorganisms.

... read more

Topics: Porphyrin (56%), Schiff base (51%), Amino acid (50%)

1 Citations


Open accessDOI: 10.1021/ACSABM.1C01029
23 Nov 2021-
Abstract: The spreading of different infections can occur through direct contact with glass surfaces in commonly used areas. Incorporating the use of alternative therapies in these materials seems essential ...

... read more

Topics: Singlet oxygen (50%)

Open accessJournal ArticleDOI: 10.1016/J.JPHOTOCHEMREV.2021.100471
Abstract: Functionalized fullerenes have shown interesting biomedical applications as potential phototherapeutic agents. The hydrophobic carbon sphere of fullerene C60 can be substituted by cationic groups to obtain amphiphilic structures. These compounds absorb mainly UV light, but absorption in the visible region can be enhanced by anchoring light-harvesting antennas to the C60 core. Upon photoexcitation, fullerenes act as spin converters by effective intersystem crossing. From this excited state, they can react with ground state molecular oxygen and other substrates to form reactive oxygen species. This process leads to the formation of singlet molecular oxygen by energy transfer or superoxide anion radical by electron transfer. Photodynamic inactivation experiments indicate that cationic fullerenes are highly effective photosensitizers with applications as broad-spectrum antimicrobial agents. In these structures, the hydrophobic character of C60 improves membrane penetration, while the presence of positive charges increases the binding of the fullerene derivatives with microbial cells. Herein, we summarize the progress of antimicrobial photodynamic inactivation based on substituted fullerenes specially designed to improve the photodynamic activity.

... read more

Topics: Fullerene (56%), Intersystem crossing (51%)

Open accessJournal ArticleDOI: 10.3390/PHARMACEUTICS13121995
24 Nov 2021-Pharmaceutics
Abstract: Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.

... read more

References
  More

65 results found


Open accessJournal ArticleDOI: 10.1016/J.CPLETT.2004.06.011
Abstract: A new hybrid exchange–correlation functional named CAM-B3LYP is proposed. It combines the hybrid qualities of B3LYP and the long-range correction presented by Tawada et al. [J. Chem. Phys., in press]. We demonstrate that CAM-B3LYP yields atomization energies of similar quality to those from B3LYP, while also performing well for charge transfer excitations in a dipeptide model, which B3LYP underestimates enormously. The CAM-B3LYP functional comprises of 0.19 Hartree–Fock (HF) plus 0.81 Becke 1988 (B88) exchange interaction at short-range, and 0.65 HF plus 0.35 B88 at long-range. The intermediate region is smoothly described through the standard error function with parameter 0.33.

... read more

Topics: Hybrid functional (66%)

8,975 Citations


Open accessJournal ArticleDOI: 10.1186/1758-2946-4-17
Abstract: The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net .

... read more

3,987 Citations


Journal ArticleDOI: 10.1021/CR010371D
Claude Schweitzer1, Reinhard Schmidt1Institutions (1)
30 Apr 2003-Chemical Reviews
Abstract: For more than 70 years, researchers in several areas of science have been intrigued by the physical and chemical properties of the lowest excited states of molecular oxygen. With two singlet states lying close above its triplet ground state, the O2 molecule possesses a very unique configuration, which gives rise to a very rich and easily accessible chemistry, and also to a number of important photophysical interactions. In particular, photosensitized reactions of the first excited state, O2(∆g), play a key role in many natural photochemical and photobiological processes, such as photodegradation and aging processes including even photocarcinogenesis. Reactions of O2(∆g) are associated with significant applications in several fields, including organic synthesis, bleaching processes, and, most importantly, the photodynamic therapy of cancer, which has now obtained regulatory approval in most countries for the treatment of several types of tumors. The development of both applications and novel observation techniques has strongly accelerated during the past few years. Significant recent advances include, for example, the development of novel luminescent singlet oxygen probes,1-4 the time-resolved detection of O2(∆g) in a transmission microscope,5 the first time-resolved measurements of singlet oxygen luminescence in vivo,6 and the observation of oxygen quenching of triplet-excited single molecules.7 Experimental and theoretical studies on the mechanisms of photosensitized formation of excited O2 states and of their deactivation have been performed for almost 40 years. While most early liquid-phase studies were exclusively concerned with O2(∆g), recent technological advances also made possible time-resolved investigations of the second excited state, O2(Σg), which can be formed in competition with O2(∆g) in many cases. A significant number of * Corresponding author. Tel.: ++49 69 79829448. Fax: ++49 69 79829445. E-mail: R.Schmidt@chemie.uni-frankfurt.de. 1685 Chem. Rev. 2003, 103, 1685−1757

... read more

Topics: Singlet oxygen (65%)

1,554 Citations


Journal ArticleDOI: 10.1016/J.JBBM.2005.10.003
Abstract: Endogenously produced pro-oxidant reactive species are essential to life, being involved in several biological functions. However, when overproduced (e.g. due to exogenous stimulation), or when the levels of antioxidants become severely depleted, these reactive species become highly harmful, causing oxidative stress through the oxidation of biomolecules, leading to cellular damage that may become irreversible and cause cell death. The scientific research in the field of reactive oxygen species (ROS) associated biological functions and/or deleterious effects is continuously requiring new sensitive and specific tools in order to enable a deeper insight on its action mechanisms. However, reactive species present some characteristics that make them difficult to detect, namely their very short lifetime and the variety of antioxidants existing in vivo, capable of capturing these reactive species. It is, therefore, essential to develop methodologies capable of overcoming this type of obstacles. Fluorescent probes are excellent sensors of ROS due to their high sensitivity, simplicity in data collection, and high spatial resolution in microscopic imaging techniques. Hence, the main goal of the present paper is to review the fluorescence methodologies that have been used for detecting ROS in biological and non-biological media.

... read more

1,377 Citations


Journal ArticleDOI: 10.1021/AR900138M
Gerrit Boschloo1, Anders Hagfeldt1Institutions (1)
Abstract: Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO2 electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO2 electrode through the recombin...

... read more

Topics: Reference electrode (68%), Auxiliary electrode (66%), Dye-sensitized solar cell (57%) ... read more

1,197 Citations