scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Numerical Method for Computing Asymptotic States and Outgoing Distributions for Kinetic Linear Half-Space Problems

01 Sep 1995-Journal of Statistical Physics (Kluwer Academic Publishers-Plenum Publishers)-Vol. 80, Iss: 5, pp 1033-1061
TL;DR: A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented and relations with the so-called variational methods are discussed.
Abstract: Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.

Content maybe subject to copyright    Report

    ! "#$&%' )(+*, "#-$&
./01(23% 45#'6!&%' 7)&(+$8&9#$:%(5;!=<&%&
>
&%@?BAC." DE8!9 (
FHG-IKJMLONQPR;S0TUG0VWLYX$Z\[
]_^a`cbed;fgihjbekQlf0mongibphaqQr\sf:`cbphtsbvucfgiwk&rc^yx{z|x~}x\ucfy#nBkjcfnBkjbpcfh:rQrcn:f0chjhibpf:rz+Oq;;Q
mongibpha|fuf
znBfgifbv#nkcf:nBkjbp¡¢r\^`cbvdfgjhibvk¤£nBka¥0nBbphjf:gjhinkjfgi`r\m¦whikj§¨nB#©;Bª«r\sa¬q¬;¬;©-¥nbvhjf:gjhO
nQkfgi`r\®oOnbp°¯¡ng±1nBkjcfnBkbv¡¢x{c`be¡°x{ucf
²³´¶µ·¢¸B¹+º»
sw;nBbp`¼sf:w;!½whjbvkjbpw;`¾rc¥1bp`cfkbv1¿Àbp`cfngtÁne§oÂQ\n:fym$giw;cpf:rQÃngjbpnBkbvw;`\n¾f:kjcwuch
z¢f:cgjcngiÄ&«;«

T ÅWÆ1ÇÈPCZ¢ÉOÊÀX8L!Ë PÌcÍJÎÐÏJZÒÑÓJ|Ç Ô1ÆaÌ\ÉOÕÖ×TNQØaÇ ÔaÌcJ$ÌcÉOÊEÙÚÌXoÌcPCNÛX8ÕÎ
Ü
ÆaÌcÖJ|ÉOÕÖÞÝÒÉONÌcZ¢ÉOß1ÆaÌcÉOJMÕNÛÏàJMZ_VWÉOÕPÌ\ÉYÊWá!ÉiÕPCX$Z_âãX8LYÏäÙaÔX$ÊÀPUåæZ\J|ß1LYP+Ç N
Ä,zo}çèéêëOÂì0ê1¿+Â®ín`uçî1®8¿ï¥¿Àç}
ðñ¾òóôõö¤ó
÷½øúùûàü&ý+þü¤ÿ


û

ý

ÿúû

ü¤ù


û

ÿ

¤û

0ü¤øúù

û



ù

ý

ÿúû

 
oûûàù
"!#
ÿ
$
0ü¤ùù6ü¤ù

6ü&ûý
%&'
;ùü

ø
(
û
)*
ü
+

ù
,
-
ùû
.
ü

¦ù
&
1ûýOø
(
ü¤ÿ
/

01/
Yøúù
23
YþûMü
'0
(4
+
û

ü¤ù
12
øúù
2
ø

ýOø
65
/

ù
78
¤ýü-ÿúøúùûàü&ýiø
$
û
9!;:=<
Uþü¤ÿ
>5 
ü

û

ý

ÿ û

ø
7
ýYû

ûàù
*
û
?,@
8ûàÿúü
+

ù
=
ø

9
Yþû
+5 
ü¤ÿeÿ û
A
&ü&ýOøúü
+

ùü¤ÿ
?
û

&/
8ü&ýYû
B
ø
%
û
?,DC
ù
A
ü&ý

(
ÿúü&ý
E&
¦û

ýYû
;
Yþû
3
ùùû


ù
 
oûûàù
F
Yþû

û
3

0
8ü¤ù
/"G
þü
+/
ü¤ù
5 H
I2J'*
cûtû
K0
ü¤ù


ù
,
L M
%/$$Ú$!%
N
cf
PO
Mw;vk
RQ
n`c`6f\nBkjbpw;`n`cu!kcf!w;gjfÚ:nhihjbpn
?S
nh8uÄ`\nBbvh8f\nBkjbpw;`h
T
hjcnh|®$cvfg8w;g
èn&dbpfgYOÂkjw;¡f:hf:cnBkbvw;`ch
U
Úngifyhjfukw!wucfÀÄfgjhiw;`cbv
VS
nBh
3W
\w
X
th:xÚèac!fgibpnÀhjbv3cnkbpw`ch
w§Úhj
YW
\w
X
th-ngjf!chif:§ cMbp`Hkcfucfhib
8S
;`ïwB§Úhj\nBfdfcbvvfhrofhjf:bnvvÄHbv` c`ucfgihiknB`cucbp`
ZS
#kcf
½f:\n&dQbvw;gtw§+kcff&nBgjvÄc\nhifhw§¦gjff:`kgiÄ
[W
cb
8S
;kh:x
ÂQc
\W
cw
X
thngifæhj\nvvĶ§¨ng/§ gjw; n`Ä_¡bp`cu w§ypw&nfcbpvbpcgibpc hOknBkjfh¯ gjfn
S
nh¼f
^]
¾f::kjh
T
°n`cukcfahjw3n`Ä!ucb
>]
½fgif`k ucf
_S
;gjf:fhÚw§¾§ gjff:ucw; bp`d;wvd;f:u/hjnh|giwknBkjbpw;`cn¢n`cudbvcgnBkjbpw;`cn
f`cf:g
RS
;bvfh
U
3nBh
`X
|f:p|nhkf/bp!½wgiknB`cfw§tcf!bpn|gif&nkbvw;`chbv`ïkcff`cf:g
RS
ÄÓ\nnB`cfw;`ïkcf
d;fbpvfhicgi§¨n:fucf:n`ukcnBk|dBngibn`khw§kjcf
O
Mw;vk
RQ
n`c`f:\nBkbvw;`fhjfunBh
4a
\gihik gjbp`bppf
f\nBkjbpw;`ch¼bv`chikjf&nuw§kjcfH®$cpf:g/w;g¼èan¤dbvfgOYÂkw¡fhf:cnBkbvw;`chxEÁaw
X
Mf:d;f:gr
PX
tf`kcf!f&n`
§ gjff1cnBkw§+!w;pf:cvfh|f:w;!fhÚhjnv rQnp`cf:gjbv&n½fkcwuch § w;g|kjcf
O
|w;ek
Q
:n``/f\nBkjbpw;`
½f:w;!ffQ:ffubp`
S
;eÄÛf:hjf`chibvd;fæbp`íw;!ckjbp`
S
Ókjbp!fx
N
cf:gjf§ w;gjfBr
PS
nhuÄ`\n!bphf\nBkjbpw;`ch
hjcw;pu½fhjfu
bX
tcf:`cf:dfg#w;hihjbppf
dc
bv`_wkcf:g
9X
|wgjuch:r`cf&nBg¼pw&nafcbpvbpcgibpc hOknBkjfh¼bp`
hjbvkj\nBkjbpw;`ch
VX
tcfgif/kcf¼vwQnM!f&nB`ï§ gjff¼cnBk bvh3hjnpMn`cu w;Qkhjbvucf/w§hicwQ¡ïn`cu w;c`cu\nBgiÄ
n&Ä;f:gjhx
N
fhjf!w`chjbvucfgjnBkbvw;`chcgiw;!k1kcf-hjf6w§Mucw;nbp`ufww;hjbekbvw;`hikjgnBkjf
eS
;bvfh:r
DX
tcfgif
kcf
=O
Mw;vk
RQ
n`c`0f\nBkjbpw;`3bvh+kjwf|hjwvd;f:u3w;`ceÄ0bp`gif
eS
;bvw;`ch+wkfgjh¦k\n`ykcw;hif|!f`kbvw;`cf:u-nw dfx
ê1`fkcf0gjf
_S
;bpw;`hufhj:gjbv½f:u#ļkcf
1S
nhuÄ`\n!bp:htf\nBkjbpw;`chngifyuf:kf:gj!bp`cf:urckfy`cfàkn
f
w;gygjw;cvf bvh0kjcf!nBkjcbp`
ZS
w§Mkcf
gO
|w;ek
Q
n`c`Hucwnbv`
hX
tbvkækcf®$cpf:gywgèan¤dbvfgOYÂkw¡fh
ucw;nbp`x
N
cbvhcf:hikjbpw;`bphÚ§¨ngÚ§ gjw;Þ½f:bp`
S
n`,f&nhOÄw;`cfrnhtkfyf:cnBkbvw;`chÚkw!w;cpfyn`cukcf
`f:gjbpn$hjf!fhhjfuækw,hjw;ed;f-kf=ngif!wB§|d;f:giÄHucb
(]
¾f:gjf:`ky`\nBkjcgjfBxz\w;g1`c!fgibpn
iX
|wgj¡
w;`kfw;cpbv`
S
w§
jO
Mw;vk
RQ
n`c`Qn`cu
9S
;nh|uÄ`\nBbvh f:cnBkbvw;`chrQhjf:f
FT
°n!w;`
S
ywkfg gif:§ fgif`c:fh
U
O
|w;cg
kS
nBk-fk6n x
ml
©
*n
r8¿Àc¡hjcbv` fk6n°x
ol
ú¤¬
n
xHç×!w;gifgjf
^a
\`cf:u¶nBccgjw;n kw
pa
\`u kjcf/:w;gjgif:k
w;cpbp`
ZS
-w;`cubvkbvw;`chÚbvh
=S
;bvdf`§ w;gÚfn!cpf1ļëvp`cf:gtn`cuèaf:c`
Q
f:gik
`l
qn
°x

N
cfcgjwcpf: kj\nBk
gX
MfHnucugjfhih¼bp`íkjcbph/ngikjbpvfbvhkjw
Ya
\`cunh/fàQcpbvbvk/nh/w;hjhibpcvfn`uÛÄ;f:k
n:cgnBkjfnBkbp`
S
gjf:nBkjbpw;`h0f:k
X
Mff:`ïkcf!¡bp`cfkbvnB`cu
.S
nBhyuÄ`\nBbvh0gjf
eS
bpw;`ch:x
sr
f:w;`
Za
\`cf
w;cgbp`d;f:hikb
>S
nBkjbpw;`chtkw!kcf0&nBhjf3w§n`bvucf&n
S
;nhrhjbv`cfyw;cgcgjw;pf hiff:haw;½f:`f:df`bv`,kjcbph
&nhifx
ht
f:k&r8bek3bph½fÄ;w;`cu ucwck3kj\nBk-hiw;fw§tkcf/!f:kjcwuch-n`cu bvucf&nhchjf:u fgjf¼:w;cvuï½f
nu\nkjfukw6!w;gjf1gif&nvbphikjbp!wucfvhx
çhn
"S
;f`fgnB¦cgibp`c:bpcvfr\kfnBkcbv`
S
!&n`f0ucw;`cfyÄ!wQucf:pvbp`
S
3kjcfbv`kjfgO§¨nf0gjf
_S
;bpw;`Ä#n
kgnB`chjbekbpw`n&Äfg
#X
tcf:gjfÚhiw;f
vu
ibp`kjfgj!fubnBkjf|f\nkbpw`
wFT
¨fBx
xS
xvrkjcf vbp`cfngjb
>Q
fu
`O
|w;ek
Q
n`c`yf\n
kbpw`
yU
|bphthjwvd;f:ur¢hjf:f3ì1w;phif
"l
«
qn
onB`cu#¥1png
l
&ª
&n
°x
r
fnBhjhjfkcbvhÚn&Ä;f:gkjw6\n&d;fhin,hiÄ!fkgOÄ;r
k\nBkybph:r¦kjcfcngikjbpvf6ucbphOkgjbvckjbpw;`æbphw`chikn`k3w;`ïhicgi§¨nBfhy\ngjnpvfkwkfbp`kjfgi§¨nBfx
zT
N
cbph
bph
S
;f:`cfgibp&nBpvÄkjcf6&nhif
FX
tf`cfd;fgkf!:cgidBnBkjcgjf-wB§Mkjcf-bp`kf:gi§¨n:f-bph1hinvo:w;cngjf:uHkjw/kcf
gjf:bpcgiwQn¾wB§Àkcf1!f&n`§ gjff1cnBk
yU
àx8Áaf:`cfBrckcfhi\n:f1ww;gjucbv`\nBkjfgjf:ucc:fhÚkw
v{
Crkjcfucbvhikn`cf
kwkjcfbv`kfgO§¨nfBxaç§ kf:gahi&nvbp`
S
bvkpbv¡f
}| ~
r
X
tcf:gjf
`
bphtkcfyw;gjufgn
&S
;`bvkucfw§kf!f&n`,§ gjff
\nBk¾r\w;`cf\nhÚkw6hiw;vdfkjcf1§ w;pvw
X
tbp`
S
3f:\nBkbvw;`
T U%
|q

X
tbek
{hl
ZU
n`cu
T^q+qU7
T
°
ZRZU
T U^ p
í
X
tcfgif
`
bvhtkjcf0w;!½w`cf`kw§okjcf0ccp¡/dfvwQ:bvkļ`cwgjn¾kw!kcfbv`kjfgO§¨nfBr

íkjcf
VO
|w;vk
RQ
n`c`
w;½f:gnBkjw;gpbv`cf&ngib
8Q
:fuHngiw;c`cuæhjw;!f6pw&n$#n
/X
|f:pvbn`æn`cu
kcf!ucbphOkgibpckjbpw;`§ `c:kjbpw;`æw;-
ckf:u¼bp`!kcf
PO
|w;vk
RQ
n`c`gjf
eS
bpw;`x
N
cbphMcgjw;pf hicw;cvu/fhjwvd;f:unBkMf&n¼bv`kjfgO§¨nf
9u
if:p
8w
0w;g
u
if:hj
w
x ç ubpgjf::khjwpkjbpw;`,Ä,n`Ä¡bv`cuwB§$bvkjfgnkbvdf1fkcwu#hiff:h3c#kjwQw6fàf`hjbvdfkw
ucw1kcbvhxoë`3§¨nB:k&rw`cfÚbph`wk$gjfnpeÄ0bp`kf:gjfhOkf:ubv`kcf § phiw;pQkbpw`¯ÀkcfÚw;`vÄyw;
f
fkh$w§bv`kjfgifhik
ngjfkcfynhOÄQ!kjwkbv0hOknBkjfh:r¾b xfx
TRZU
Ún`ukfyw;Qk
S
;w;bv`
S
!ucbphOkgjbvckjbpw;`
T
¨
ZU^Dh
x
ë`cucff:ur½kjcf0w;gigjfkw;c`cucngiÄ:w;`cucbekbpw`chÚ§ w;gÚkcf
VS
nhuÄ`\n!bphtf:cnBkbvw;`chnB`cukjcfybv`
S
;w;bv`
S
ucf`chibvkjbpfhMnBk8kfw;c`cu\nBgiÄ6w§½kcf
O
|w;ek
Q
n`c`6gif
eS
;bvw;`n`f
BX
tgjbvkikf:`bv`!kjfgj!hw§¾kjcw;hjfa\n`Q
kbvkjbpf:hÚw;`cvÄx
r
Óf8hjcnp;ufhj:gjbv½f8bp`1kjcbphÀ\nB½f:gCn`c!fgibp&nB;cgjwf:uccgif
X
tbp0w;!ckjfh
f
chikCkjcw;hjf8\n`kjbvkbvfh
Ächibp`
S
-n3|\ncn`Q®8`hj¡w
&S
3kÄQffàcn`chjbvw;`/kw3nccgiw¤QbvnBkjfkjcfhiw;pkjbpw;`¾x
N
cf1!f:kjcwQubph
hjff:`kw!w;`dfg
RS
fd;f:giÄ,§¨nhika`cf:gjbv&nvvÄ;xMë khiff:hkw
gS
bvd;fyn:cgjnBkfygjfhicvkjh
X
tcf:`w\nBgjfu
kw/kf6n¤dBnbvnpf0fQcpbvbekhiw;pkjbpw;`hbp`hiw;!f3hjf:bnnhjf:hn`cukw¼gifhicvkjhw;knbp`cf:uÄ!w;gjf
ucbpgif:k|hjbv3cnkbpw`!hicf!fh:x
N
cbphM`f:gjbpn¢cgjwf:uccgifbphbp`chicbpgifuÄ!kf
X
Mw;gj¡6w§C}tbp`
ZS
;fbvhjf`
l
ú
qn
r;wgjb
8S
bp`\nvvÄnbp!funBkhiw;vdbv`
S
akjcf w;`cfàhi½f:fu3kgjn`chi½w;gOkf:cnBkbvw;`
`X
tbvkj3bphiwkgiw;cbvMhi&nBkikfgibp`
S
X
tbvky§ cppbv`cf
4S
fw;!f:kjgiÄ

bp`kjcbph¦hjf:bn&nhifr}tbp`
S
fbphif`
`X
|nh8npfMkjw
S
;bed;f naw;`d;f:g
RS
;f:`cfcgiwQw§
§ w;gtcbpht!f:kwQur
X
tbppf1w;bv`kjbp`
S
6w;Qkkj\nBkbvkthicw;cvuf1dBnpbvu,bv`w;gif
S
;f`cf:gnC:w;`kfkjhx
N
cf
a
\gjhOk8hikf:wB§½wcg!f:kwQu-bv`3kcfÚhi½f:bnBc&nhif
=
bvhhjw
X
t`6kwf fcbedBnpf:`k$kjwkcfÚhiwBnpvfu
dnBgjbnkbpw`\nfkcwuchuf:d;f:pw;fu6Ä6|f:gj:b
8S
;`\nB`cb
l
ª
&n
°rìwphjf
l
ú¤
n
\n`u¿Àw¤ÄnBp¡nr;z\f:g
RQ
b
>S
;fg
=l
ú
n
¢n`cu
chjf:u § w;gucfkfgibv`cbp`
ZS
/kcf6hjvbpHw;c`cu\nBgiÄ:wQf
^
:bpf:`kjh0§ wgkjcf!èn&dbpf:gÂkw;¡Bfh0f\nBkjbpw;`xz\w;g
wkcf:g0nccgiwncf:hykw¼kjcf`c!fgibpnhjwpkjbpw;`Hw§kcfnw¤d;f!\nv§Mhjcnf!cgjwcpf:
X
|f!gjf§ fg1kw
çw;¡b roÂQw;`f
l
en
°r$|w;giw;`
l
q
qn
°rÂQbvf
_X
MfgOk&r
N
cw;nh
[l
¤«
qn
Mn`u § w;g0nnBkjcfnBkbv&n¦bp`d;f:hikjb
8S
nBkjbpw;`Hkw
çgikjcgrc|fgj:b
8S
;`cn`cb
#l
{
qn
°r|fgj:b
8S
;`cn`cb
#l
{
qn
°r\|wgjw;`f:kÚnB x
Bl*n
°rcì1gjf:f`½f:g
RS
3fkÚn°x
Bl
;
_n
¾n`cuÂbpf
_X
MfgOk&r
N
cw;nh
Vl
ú¤«
n
x
N
cbpht\nfgtbvhÚw;g
RS
nB`cb
8Q
:fu,nh § w;vpw
X
th¯
ë`H|\nkjfgr
X
tcf:gjf
vX
Mffànbv`#kcfyfkcwu§ wgn#ucbvf:`chjbvw;`\nÀ!wQufCf\nBkjbpw;`¾r¾nh
3X
|f:p

nhybv`ï|cnkf:g©Qr
jX
tcf:gjf6kcf© ucbp!f`chibpw;`cn
BT
¨bv`d;fvwQ:bvkÄ
ZUO
Úì¥ f\nBkjbpw;`æbph:w;`chjbvucfgifur
jX
|f
cgjwf:fu#bv`/kcf1§ w;vpw
X
tbp`
ZS
3hiÄhikjfnBkbv
X
n&Ä¯
mongOkybv`kjgjwucc:fhÚkcff:cnBkbvw;`ch
e
mongOk!ufhj:gjbv½f:hakf!f:kwQu,§ w;gtw;!ckjbp`
S
6kcfnhiÄ!kwBkbp0hiknBkf:hn`ukf
hu
jnv½f:ucw!w;½f:gO
nBkw;g
kw`c
hjffkf0uf
_a
\`cbekbvw;`¼½f:pw
X¡c
§ wg
=p
_
Z
mongOk ©hjf:bnvb
8Q
f:h$kwykjcf&nhif

ynB`cu:w;cngjf:hkjcfagifhicvkjh
X
tbek6kcw;hifawB§¾kfdBngibnBkjbpw;`\nB
fkcwu
D
mongOkaª6ucbvhj:chjhifhakjcf`cf:gjbv&ngifhicvkjhx
¢
L
A¾7)& %(!%3
¤£

a 3%%
¦¨§
¼0$!%
ë`ïkcbvhyhif:kjbpw;`
YX
Mf/chif¼nhibp!cpf!hiknBkbvw;`\ngOÄ :ubp!f`chibpw;`\nB$wucf
4O
|w;ek
Q
:n`` f:cnBkbvw;`Ókw
ucfhigjbv½f,w;cg-`c!fgibpnÚcgjwf:uccgifx ë`Û|\nBkf:g©kbph-cgiwQ:fuccgif
dX
tbvpM½f,ncpbpf:u kwkcf
pbp`f&ngib
8Q
f:u
}O
Úì¥ f\nkbpw`
dX
tbek,©ubp!f`chibpw;`\nBdfpwbekÄ/hi\nfBx
©
G
«
ïÍP
¬¯®
ÆXoÌ\ÉYJ|Õ
|w;`chjbvucfgÚkjcf1§ w;pvw
X
tbv`
S
3hOknBkjbpw;`\nBgiÄ/f:\nBkbvw;`bp`,n-\ne§ohi\nf
TU%
|q
4°
i±³²
´
±µ²
´
T
°
ZU
T U^ p
í
X
tbvk
}{ml

ZU^"hdh
x8Áaf:gjf
X
Mfyucf:`cwkjfu#Ä
±
kcf:f`kf:gjfu¾r½gifucc:fu#n
/X
|f:pvbn`
±
T
¶jU·
²
´¸
{¹T
°Fº
´
U
tn`cu
pX
Mfuf
_a
\`cf
g¨»z
¯
½¼
¾
»iT U%¿
¢r\be§
»
æbvhabv`kjf
eS
;gjncvfx
N
cf0§ w;pvw
X
tbv`
S
cgjw;w;hibvkbvw;` gjf:&nvph3kjcffhjhif`kbpnph6w§kf,fàQbphikjf`c:fr `cbpcf:`cfhihn`uínhOÄkjwkbv¼½f:\n&dbpw;g
gjfhicvkjhnpgif&nuÄ¡`cw
X
t`§ w;g kjcbphthjbvpf!wQuf rQhjf:fy¥nfg
Vl
¤©
qn
+nB`cuì1gjf:f`fg
RS
!f:kan°x
Bl
;
_n
°x
À
·
$·º
+ÂÃÂ
¨·
Ä
¨]
bÆÇ`È
5
ÉËÊ?Ì^ͤÉÊ?Ì}ÎÏ^ÐqÑ&Ì`ÒÓÐ&ÏeÔ8Ì^ÕÖÊZÎq×VØ
ÚÙ
TkT
O
PÜÛ ÛU%¿U[ÎzÝ/Í?Þ ßeÝ?Ì
×ÐqÔÝÉ ÞÐqÍ
zÙ=àFTJ¿0{Ù
TRT
Y
=áÛ ÛUk¿URU_âÆÇã
Ò
hÉËÊ?Ì^ÓÌ"Ìkä0Þ8×^ÉË×AÎåÎ&ÞËÍzÎ[ÝÍ?Þ ßeÝ?Ì1×ÐqÔÝÉ ÞÐqÍYÐqÍæÌ
ÉÊ?Ì=ç4Ý*ä
¼
T 1¤U
TË{U
±
²
´
¿èBé#Ê/ÞæÊÞ8×AÞËÍê/ÌÒ?Ì^Íê/Ì^Í?ÉÐÇ{Dè3Þ8×"Îq××^Þ(å&ÍÌRêdÎ&ÍmÎ&Ó_ÏeÞËÉ ÓRÎ&Óë}ÑqÎ&ÔÝ?Ì
ì
íâ
î
ÐqÓÌÐqÑ&Ì^Ó
T{RZU;ï ð
à
±
²
´
Îq×B{}ï ¡èé#Ê?Ì^ÓÌð
à
íâ
çh fànbv`cfu/bv`kfbp`kgiwQuc:kjbpw;`r§ w;gkcfaccgjw;hif1w§Cucw;nbp`!ucf:w;!½whjbvkjbpw;`h
X
Mfngjfabp`kf:gO
fhikjfuw;`cvÄbp`/kjcf0nhiÄ!kwBkbphiknkf
à
n`ubv`/kcf1gif
_W
\f::kf:u#ucf:`chjbekÄ
T
¨
ZU^mp
íx
ir
Óf
hj\nv¦np
Pu
jnv½f:ucw/w;fgjnBkwg
Rw
kjcf3vbp`cfngaw½f:gnBkjw;g
T
¨
ZU=ñï
T
°
Z
°
°
*U^RòY
Qx
Pr
Óf
X
tbpp½`cw
X
ãucf:hjgibpf0n6`c!fgibpncgiwQ:fuccgif0kjw6w;!ckjfkjcfhif0dBnvcfh:x
©
G
©
«
ÓÍPUÅWÆ1ÇÈPCZ¢ÉOÊÀX8L!Ë PÌcÍJÎÐÏJZ
¤óáôöõ
N
cfnbv`bpucfnfbp`cukf!f:kjcwQuHbvhkwhjw;ed;f-kf
"S
;nhuÄ`\n!bphf:cnBkbvw;`chnhihjwbnkfuHkw
kcf¼!wQuf
4O
|w;vk
RQ
n`c` f\nBkjbpw;` n`uïkcf:` kjwchif/kcf,|\nBcnB`QY®$`chi¡w
0S
fàcn`chjbvw;` nh-n`
nccgiw¤QbvnBkjf1hjw;vkbvw;`x
©

÷
·
ø.ÁúùÃûZÃÂ
·
Ä
í·
yüBÃý
û
cº:´
ø.ÁÃ
¤·
?ÃÂ þ
^ÃûZÃ
¤³º»
ë`chikjf&nuw§
TU%
|q
4°
i±³²
´
±µ²
´
¯
_
T
°
ZU
T U^ p
í
T
Qxe
U
w;`chibpucf:gÚkcf0nu
f
wbp`ktf\nBkjbpw;`
°
ToU%
|+ÿ
ÿ3°
ÿ ±³²
´
±³²
´
A
Û
ÿ
T
¨
ZU
Z Po
í
T
Qx~
0U
Áafgifr¢n:w;giucbp`
ZS
3kw3kf1cgjw;w;hibvkbvw;`¼nw¤d;fBr\n`,nucucbekbvw;`\n
?W
\Q¼w;`cubvkbvw;`/bvh `cff:ucfu¾x
r
fck
ÚTU
±µ²
´
ÿ
N
cf-chjcn¦§ w;gi2w§$kcf3n½w¤df-f\nBkjbpw;`bvhhiff`HÄ,kgnB`chi§ w;gibv`
Sg9ï
°
y3hï
°
Cr
X
tcbv
S
;bvdfh
ToU%
|+ÿ
ÿ3°
ÿ ±
²
´
±
²
´
p
í
ÿ
T
°
ZU
 o¯
_
T
Qx{©
U
ToU
ÿ7±µ²
´
°
N
cbphÚf:cnBkbvw;`
[X
tbpp½`cw
X
Òfhjw;ed;f:unBccgjw&QbpnBkjfvÄx
#r
f1cgjwf:funhÚbp`¼kf0|\ncn`Q®8`hj¡w
&S
fQ\n`chibpw;`,!f:kwQux$ë`kjf
eS
;gjnBkbv`
S
-kcff\nkbpw`w¤d;f:gÚkcf1d;f:pwbekļhj\nBf
S
;bvdfh
|
ÚTU
ÿ ±
²
´
|
¤
ÿ ±
²
´
b
|
ÿ ±
²
´
N
cfyn:gjw;hiw;cbv1wf:`k bph
¯
ÿ ±³²
´
N
cfy:w;`chifgidBnBkjbpw;`f:cnBkbvw;`bvh kcf:`
|
ò
ÿ ±
²
´
b
|
sf
_a
\`cbv`
S"
ÿ
¯
\ÿ3°
ÿ ±
²
´
±
²
´
r\w;`cf
S
;fkh:r
X
tbvk
}
±
²
´
3T 
±
²
´
U
n`cu
.T
x~©
U
à¯

±
²
´
ÿ
3T
±
²
´
U
ÿ
ò
±
²
´
ÿ
á°
|
¤
±
²
´
TU
ÿ
Áafgif
1X
Mfhjchikbekkjf1kcf
Q
f:gjwkj#w;giucfgtnBccgjw&QbpnBkjbpw;`/§ w;g
ÿ
ÿ

±
²
´
¯
¤
±
²
´
ÿ
á°
|
T¤
±
%U
°

|
ò
±
Ú°
|
N
cbphtgjf:hjcekhtbp`

|
°
|
Z p
í
ª

Citations
More filters
Journal ArticleDOI
03 Apr 2017
TL;DR: In this paper, a hybrid quantum-classical model for stationary electron transport in graphene, in the presence of sharp potential steps or barriers, is presented, where a quantum region (an asymptotically thin strip around the potential step or barrier) is coupled through quantum scattering data to a classical region, where electron transport is described in terms of semiclassical kinetic equations.
Abstract: We give a concise account on the derivation of hybrid quantum-classical models for stationary electron transport in graphene, in presence of sharp potential steps or barriers. A quantum region (an asymptotically thin strip around the potential step or barrier) is coupled through the quantum scattering data to a classical region, where electron transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of the Hilbert expansion method, which requires the introduction of a boundary layer corrector and the discussion of a system of coupled Milne problems.

3 citations

Journal ArticleDOI
TL;DR: In this article, the authors derive a mathematical model of a typical graphene heterojunction device, where the classical regions are described by drift-diffusion equations and the quantum zone is seen as an interface where suitable transmission conditions are imposed that take into account the quantum scattering process.
Abstract: A typical graphene heterojunction device can be divided into two classical zones, where the transport is basically diffusive, separated by a "quantum active region" (e.g., a locally gated region), where the charge carriers are scattered according to the laws of quantum mechanics. In this paper we derive a mathematical model of such a device, where the classical regions are described by drift-diffusion equations and the quantum zone is seen as an interface where suitable transmission conditions are imposed that take into account the quantum scattering process. Numerical simulations show good agreement with experimental data.

3 citations


Cites methods from "A Numerical Method for Computing As..."

  • ...The Marshak approximation can also be considered the first step of a systematic iteration procedure proposed by Golse and Klar [15]....

    [...]

Posted Content
TL;DR: This work shows that the scheme is AP and provides a stability analysis to obtain an explicit CFL condition, which couples a hyperbolic and a parabolic condition, and obtains an upper bound on the relaxation parameter, which is the crucial parameter of the used time discretization.
Abstract: We propose a two-dimensional asymptotic-preserving scheme for linear transport equations with diffusive scalings. It is based on the time splitting developed by Jin, Pareschi and Toscani [SINUM, 2000], but takes spatial discretizations on staggered grids. Compared with the previous methods based on regular Cartesian grids, this method preserves the discrete diffusion limit with a more compact stencil thus has a better spatial resolution. This scheme requires less unknowns than one could have naively expected for a method based on staggered grids. We show that the scheme is AP and we provide a stability analysis to obtain an explicit CFL condition, which couples a hyperbolic and a parabolic condition. This type of condition is common for AP schemes and guarantees uniform stability with respect to the mean free path. In addition, we obtain an upper bound on the relaxation parameter, which is the crucial parameter of the used time discretization. Several numerical examples are provided to verify the accuracy and asymptotic property of the scheme.

2 citations


Cites background from "A Numerical Method for Computing As..."

  • ...Similar to [21, 10, 20], the solution of a kinetic half-space problem, describing the zeroth-order diffusion boundary conditions, can be approximated to determine the outflow function f (t,x, v): f(t,x, v) = f (t,x, v) for n · x < 0, x ∈ ∂X....

    [...]

Journal ArticleDOI
TL;DR: In this article, domain decomposition for kinetic and hydrodynamic equations is investigated and coupling conditions at the interface between the equations are developed by considering interface layers, which leads to kinetic half-space problems.
Abstract: This article is concerned with domain decomposition for kinetic and hydrodynamic equations. Coupling conditions at the interface between the equations are developed and investigated. In particular for nonequilibrium situations at the interface, new coupling conditions are developed by considering interface layers. This leads to kinetic half-space problems. A fast procedure to solve these problems is given.

2 citations


Cites background from "A Numerical Method for Computing As..."

  • ...A more detailed description of the scheme for a BGK model equation and for semiconductor equations, and further references on linear half-space problems can be found in [16,17]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the boundary conditions for the linearized Euler-Poisson derived from the BGK kinetic model in the small mean free path regime were derived from boundary layers generated from the fact that the incoming kinetic flux might be far from the thermodynamic equilibrium.
Abstract: In this work, we consider the computation of the boundary conditions for the linearized Euler-Poisson derived from the BGK kinetic model in the small mean free path regime. Boundary layers are generated from the fact that the incoming kinetic flux might be far from the thermodynamical equilibrium. In [2], the authors propose a method to compute numerically the boundary conditions in the hydrodynamic limit relying on an analysis of the boundary layers. In this paper, we will extend these techniques in the case of the coupled Euler-Poisson system.

1 citations


Cites methods from "A Numerical Method for Computing As..."

  • ...A method to solve this overdeterminated problem is to pick the number of equations needed in (29) (see [14])....

    [...]

  • ...A possible path for this purpose can be inspired by the approximations designed in [14]....

    [...]

  • ...when the signature of the quadratic form Q is (1, 1), we use the fact that we have the additional conservation law (see [2, 14])...

    [...]

References
More filters
Book
01 Jan 1988
TL;DR: In this article, the Boltzmann Equation for rigid spheres is used to model the dynamics of a gas of rigid spheres in phase space and to solve the problem of flow and heat transfer in regions bounded by planes or cylinders.
Abstract: I. Basic Principles of The Kinetic Theory of Gases.- 1. Introduction.- 2. Probability.- 3. Phase space and Liouville's theorem.- 4. Hard spheres and rigid walls. Mean free path.- 5. Scattering of a volume element in phase space.- 6. Time averages, ergodic hypothesis and equilibrium states.- References.- II. The Boltzmann Equation.- 1. The problem of nonequilibrium states.- 2. Equations for the many particle distribution functions for a gas of rigid spheres.- 3. The Boltzmann equation for rigid spheres.- 4. Generalizations.- 5. Details of the collision term.- 6. Elementary properties of the collision operator. Collision invariants.- 7. Solution of the equation Q(f,f) = 0.- 8. Connection between the microscopic description and the macroscopic description of gas dynamics.- 9. Non-cutoff potentials and grazing collisions. Fokker-Planck equation.- 10. Model equations.- References.- III. Gas-Surface Interaction and the H-Theorem.- 1. Boundary conditions and the gas-surface interaction.- 2. Computation of scattering kernels.- 3. Reciprocity.- 4. A remarkable inequality.- 5. Maxwell's boundary conditions. Accommodation coefficients.- 6. Mathematical models for gas-surface interaction.- 7. Physical models for gas-surface interaction.- 8. Scattering of molecular beams.- 9. The H-theorem. Irreversibility.- 10. Equilibrium states and Maxwellian distributions.- References.- IV, Linear Transport.- 1. The linearized collision operator.- 2. The linearized Boltzmann equation.- 3. The linear Boltzmann equation. Neutron transport and radiative transfer.- 4. Uniqueness of the solution for initial and boundary value problems.- 5. Further investigation of the linearized collision term.- 6. The decay to equilibrium and the spectrum of the collision operator.- 7. Steady one-dimensional problems. Transport coefficients.- 8. The general case.- 9. Linearized kinetic models.- 10. The variational principle.- 11. Green's function.- 12. The integral equation approach.- References.- V. Small and Large Mean Free Paths.- 1. The Knudsen number.- 2. The Hilbert expansion.- 3. The Chapman-Enskog expansion.- 4. Criticism of the Chapman-Enskog method.- 5. Initial, boundary and shock layers.- 6. Further remarks on the Chapman-Enskog method and the computation of transport coefficients.- 7. Free molecule flow past a convex body.- 8. Free molecule flow in presence of nonconvex boundaries.- 9. Nearly free-molecule flows.- References.- VI. Analytical Solutions of Models.- 1. The method of elementary solutions.- 2. Splitting of a one-dimensional model equation.- 3. Elementary solutions of the simplest transport equation.- 4. Application of the general method to the Kramers and Milne problems.- 5. Application to the flow between parallel plates and the critical problem of a slab.- 6. Unsteady solutions of kinetic models with constant collision frequency.- 7. Analytical solutions of specific problems.- 8. More general models.- 9. Some special cases.- 10. Unsteady solutions of kinetic models with velocity dependent collision frequency.- 11. Analytic continuation.- 12. Sound propagation in monatomic gases.- 13. Two-dimensional and three-dimensional problems. Flow past solid bodies.- 14. Fluctuations and light scattering.- References.- VII. The Transition Regime.- 1. Introduction.- 2. Moment and discrete ordinate methods.- 3. The variational method.- 4. Monte Carlo methods.- 5. Problems of flow and heat transfer in regions bounded by planes or cylinders.- 6. Shock-wave structure.- 7. External flows.- 8. Expansion of a gas into a vacuum.- References.- VIII. Theorems on the Solutions of the Boltzmann Equation.- 1. Introduction.- 2. The space homogeneous case.- 3. Mollified and other modified versions of the Boltzmann equation.- 4. Nonstandard analysis approach to the Boltzmann equation.- 5. Local existence and validity of the Boltzmann equation.- 6. Global existence near equilibrium.- 7. Perturbations of vacuum.- 8. Homoenergetic solutions.- 9. Boundary value problems. The linearized and weakly nonlinear cases.- 10. Nonlinear boundary value problems.- 11. Concluding remarks.- References.- References.- Author Index.

2,987 citations

Book
10 Feb 1987
TL;DR: In this paper, the authors present a survey of abstract kinetic theory and its application in various areas of physics, chemistry, biology, and engineering, including radiative transfer and rarefied gas dynamics.
Abstract: This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity. These include the equations of traditional (neutron) transport theory, radiative transfer, and rarefied gas dynamics, as well as a plethora of additional applications in various areas of physics, chemistry, biology and engineering. The mathematical problems addressed within the monograph deal with existence and uniqueness of solutions of initial-boundary value problems, as well as questions of positivity, continuity, growth, stability, explicit representation of solutions, and equivalence of various formulations of the transport equations under consideration. The reader is assumed to have a certain familiarity with elementary aspects of functional analysis, especially basic semigroup theory, and an effort is made to outline any more specialized topics as they are introduced. Over the past several years there has been substantial progress in developing an abstract mathematical framework for treating linear transport problems. The benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has been established for a variety of problems which were traditionally treated by somewhat heuristic distribution theory methods; and (ii) the results obtained are applicable to a great variety of disparate kinetic processes. Thus, numerous different systems of integrodifferential equations which model a variety of kinetic processes are themselves modelled by an abstract operator equation on a Hilbert (or Banach) space.

272 citations

Journal ArticleDOI
TL;DR: In this article, the steady behavior of a gas in contact with its condensed phase of arbitrary shape is investigated on the basis of kinetic theory, and two simple examples (evaporation from a sphere, two-surface problem of evaporation and condensation) are worked out.
Abstract: The steady behavior of a gas in contact with its condensed phase of arbitrary shape is investigated on the basis of kinetic theory. The Knudsen number of the system (the mean free path of the gas molecules divided by the characteristic length of the system) being assumed to be fairly small, the hydrodynamic equations for the macroscopic quantities, the velocity, temperature, and pressure, of the gas and their boundary conditions on the interface of the gas and its condensed phase are derived, and two simple examples (evaporation from a sphere, two-surface problem of evaporation and condensation) are worked out.

164 citations

Journal ArticleDOI
TL;DR: In this article, the half space boundary value problem for the Boltzmann equation with an incoming distribution was studied and the boundary layer arising in the kinetic theory of gases as the mean free path tends to zero.
Abstract: In the first part of this paper, we study the half space boundary value problem for the Boltzmann equation with an incoming distribution, obtained when considering the boundary layer arising in the kinetic theory of gases as the mean free path tends to zero. We linearize it about a drifting Maxwellian and prove that, as conjectured by Cercignani [4], the problem is well-posed when the drift velocity u exceeds the sound speed c, but that one (respectively four, five) additional conditions must be imposed when 0 < u < c (respectively - c < u < 0 and u < - c). In the second part, we show that the well-posedness and the asymptotic behavior results for kinetic layers equations with prescribed incoming flux can be extended to more general and realistic boundary conditions.

132 citations