scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Numerical Method for Computing Asymptotic States and Outgoing Distributions for Kinetic Linear Half-Space Problems

01 Sep 1995-Journal of Statistical Physics (Kluwer Academic Publishers-Plenum Publishers)-Vol. 80, Iss: 5, pp 1033-1061
TL;DR: A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented and relations with the so-called variational methods are discussed.
Abstract: Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.

Content maybe subject to copyright    Report

    ! "#$&%' )(+*, "#-$&
./01(23% 45#'6!&%' 7)&(+$8&9#$:%(5;!=<&%&
>
&%@?BAC." DE8!9 (
FHG-IKJMLONQPR;S0TUG0VWLYX$Z\[
]_^a`cbed;fgihjbekQlf0mongibphaqQr\sf:`cbphtsbvucfgiwk&rc^yx{z|x~}x\ucfy#nBkjcfnBkjbpcfh:rQrcn:f0chjhibpf:rz+Oq;;Q
mongibpha|fuf
znBfgifbv#nkcf:nBkjbp¡¢r\^`cbvdfgjhibvk¤£nBka¥0nBbphjf:gjhinkjfgi`r\m¦whikj§¨nB#©;Bª«r\sa¬q¬;¬;©-¥nbvhjf:gjhO
nQkfgi`r\®oOnbp°¯¡ng±1nBkjcfnBkbv¡¢x{c`be¡°x{ucf
²³´¶µ·¢¸B¹+º»
sw;nBbp`¼sf:w;!½whjbvkjbpw;`¾rc¥1bp`cfkbv1¿Àbp`cfngtÁne§oÂQ\n:fym$giw;cpf:rQÃngjbpnBkbvw;`\n¾f:kjcwuch
z¢f:cgjcngiÄ&«;«

T ÅWÆ1ÇÈPCZ¢ÉOÊÀX8L!Ë PÌcÍJÎÐÏJZÒÑÓJ|Ç Ô1ÆaÌ\ÉOÕÖ×TNQØaÇ ÔaÌcJ$ÌcÉOÊEÙÚÌXoÌcPCNÛX8ÕÎ
Ü
ÆaÌcÖJ|ÉOÕÖÞÝÒÉONÌcZ¢ÉOß1ÆaÌcÉOJMÕNÛÏàJMZ_VWÉOÕPÌ\ÉYÊWá!ÉiÕPCX$Z_âãX8LYÏäÙaÔX$ÊÀPUåæZ\J|ß1LYP+Ç N
Ä,zo}çèéêëOÂì0ê1¿+Â®ín`uçî1®8¿ï¥¿Àç}
ðñ¾òóôõö¤ó
÷½øúùûàü&ý+þü¤ÿ


û

ý

ÿúû

ü¤ù


û

ÿ

¤û

0ü¤øúù

û



ù

ý

ÿúû

 
oûûàù
"!#
ÿ
$
0ü¤ùù6ü¤ù

6ü&ûý
%&'
;ùü

ø
(
û
)*
ü
+

ù
,
-
ùû
.
ü

¦ù
&
1ûýOø
(
ü¤ÿ
/

01/
Yøúù
23
YþûMü
'0
(4
+
û

ü¤ù
12
øúù
2
ø

ýOø
65
/

ù
78
¤ýü-ÿúøúùûàü&ýiø
$
û
9!;:=<
Uþü¤ÿ
>5 
ü

û

ý

ÿ û

ø
7
ýYû

ûàù
*
û
?,@
8ûàÿúü
+

ù
=
ø

9
Yþû
+5 
ü¤ÿeÿ û
A
&ü&ýOøúü
+

ùü¤ÿ
?
û

&/
8ü&ýYû
B
ø
%
û
?,DC
ù
A
ü&ý

(
ÿúü&ý
E&
¦û

ýYû
;
Yþû
3
ùùû


ù
 
oûûàù
F
Yþû

û
3

0
8ü¤ù
/"G
þü
+/
ü¤ù
5 H
I2J'*
cûtû
K0
ü¤ù


ù
,
L M
%/$$Ú$!%
N
cf
PO
Mw;vk
RQ
n`c`6f\nBkjbpw;`n`cu!kcf!w;gjfÚ:nhihjbpn
?S
nh8uÄ`\nBbvh8f\nBkjbpw;`h
T
hjcnh|®$cvfg8w;g
èn&dbpfgYOÂkjw;¡f:hf:cnBkbvw;`ch
U
Úngifyhjfukw!wucfÀÄfgjhiw;`cbv
VS
nBh
3W
\w
X
th:xÚèac!fgibpnÀhjbv3cnkbpw`ch
w§Úhj
YW
\w
X
th-ngjf!chif:§ cMbp`Hkcfucfhib
8S
;`ïwB§Úhj\nBfdfcbvvfhrofhjf:bnvvÄHbv` c`ucfgihiknB`cucbp`
ZS
#kcf
½f:\n&dQbvw;gtw§+kcff&nBgjvÄc\nhifhw§¦gjff:`kgiÄ
[W
cb
8S
;kh:x
ÂQc
\W
cw
X
thngifæhj\nvvĶ§¨ng/§ gjw; n`Ä_¡bp`cu w§ypw&nfcbpvbpcgibpc hOknBkjfh¯ gjfn
S
nh¼f
^]
¾f::kjh
T
°n`cukcfahjw3n`Ä!ucb
>]
½fgif`k ucf
_S
;gjf:fhÚw§¾§ gjff:ucw; bp`d;wvd;f:u/hjnh|giwknBkjbpw;`cn¢n`cudbvcgnBkjbpw;`cn
f`cf:g
RS
;bvfh
U
3nBh
`X
|f:p|nhkf/bp!½wgiknB`cfw§tcf!bpn|gif&nkbvw;`chbv`ïkcff`cf:g
RS
ÄÓ\nnB`cfw;`ïkcf
d;fbpvfhicgi§¨n:fucf:n`ukcnBk|dBngibn`khw§kjcf
O
Mw;vk
RQ
n`c`f:\nBkbvw;`fhjfunBh
4a
\gihik gjbp`bppf
f\nBkjbpw;`ch¼bv`chikjf&nuw§kjcfH®$cpf:g/w;g¼èan¤dbvfgOYÂkw¡fhf:cnBkbvw;`chxEÁaw
X
Mf:d;f:gr
PX
tf`kcf!f&n`
§ gjff1cnBkw§+!w;pf:cvfh|f:w;!fhÚhjnv rQnp`cf:gjbv&n½fkcwuch § w;g|kjcf
O
|w;ek
Q
:n``/f\nBkjbpw;`
½f:w;!ffQ:ffubp`
S
;eÄÛf:hjf`chibvd;fæbp`íw;!ckjbp`
S
Ókjbp!fx
N
cf:gjf§ w;gjfBr
PS
nhuÄ`\n!bphf\nBkjbpw;`ch
hjcw;pu½fhjfu
bX
tcf:`cf:dfg#w;hihjbppf
dc
bv`_wkcf:g
9X
|wgjuch:r`cf&nBg¼pw&nafcbpvbpcgibpc hOknBkjfh¼bp`
hjbvkj\nBkjbpw;`ch
VX
tcfgif/kcf¼vwQnM!f&nB`ï§ gjff¼cnBk bvh3hjnpMn`cu w;Qkhjbvucf/w§hicwQ¡ïn`cu w;c`cu\nBgiÄ
n&Ä;f:gjhx
N
fhjf!w`chjbvucfgjnBkbvw;`chcgiw;!k1kcf-hjf6w§Mucw;nbp`ufww;hjbekbvw;`hikjgnBkjf
eS
;bvfh:r
DX
tcfgif
kcf
=O
Mw;vk
RQ
n`c`0f\nBkjbpw;`3bvh+kjwf|hjwvd;f:u3w;`ceÄ0bp`gif
eS
;bvw;`ch+wkfgjh¦k\n`ykcw;hif|!f`kbvw;`cf:u-nw dfx
ê1`fkcf0gjf
_S
;bpw;`hufhj:gjbv½f:u#ļkcf
1S
nhuÄ`\n!bp:htf\nBkjbpw;`chngifyuf:kf:gj!bp`cf:urckfy`cfàkn
f
w;gygjw;cvf bvh0kjcf!nBkjcbp`
ZS
w§Mkcf
gO
|w;ek
Q
n`c`Hucwnbv`
hX
tbvkækcf®$cpf:gywgèan¤dbvfgOYÂkw¡fh
ucw;nbp`x
N
cbvhcf:hikjbpw;`bphÚ§¨ngÚ§ gjw;Þ½f:bp`
S
n`,f&nhOÄw;`cfrnhtkfyf:cnBkbvw;`chÚkw!w;cpfyn`cukcf
`f:gjbpn$hjf!fhhjfuækw,hjw;ed;f-kf=ngif!wB§|d;f:giÄHucb
(]
¾f:gjf:`ky`\nBkjcgjfBxz\w;g1`c!fgibpn
iX
|wgj¡
w;`kfw;cpbv`
S
w§
jO
Mw;vk
RQ
n`c`Qn`cu
9S
;nh|uÄ`\nBbvh f:cnBkbvw;`chrQhjf:f
FT
°n!w;`
S
ywkfg gif:§ fgif`c:fh
U
O
|w;cg
kS
nBk-fk6n x
ml
©
*n
r8¿Àc¡hjcbv` fk6n°x
ol
ú¤¬
n
xHç×!w;gifgjf
^a
\`cf:u¶nBccgjw;n kw
pa
\`u kjcf/:w;gjgif:k
w;cpbp`
ZS
-w;`cubvkbvw;`chÚbvh
=S
;bvdf`§ w;gÚfn!cpf1ļëvp`cf:gtn`cuèaf:c`
Q
f:gik
`l
qn
°x

N
cfcgjwcpf: kj\nBk
gX
MfHnucugjfhih¼bp`íkjcbph/ngikjbpvfbvhkjw
Ya
\`cunh/fàQcpbvbvk/nh/w;hjhibpcvfn`uÛÄ;f:k
n:cgnBkjfnBkbp`
S
gjf:nBkjbpw;`h0f:k
X
Mff:`ïkcf!¡bp`cfkbvnB`cu
.S
nBhyuÄ`\nBbvh0gjf
eS
bpw;`ch:x
sr
f:w;`
Za
\`cf
w;cgbp`d;f:hikb
>S
nBkjbpw;`chtkw!kcf0&nBhjf3w§n`bvucf&n
S
;nhrhjbv`cfyw;cgcgjw;pf hiff:haw;½f:`f:df`bv`,kjcbph
&nhifx
ht
f:k&r8bek3bph½fÄ;w;`cu ucwck3kj\nBk-hiw;fw§tkcf/!f:kjcwuch-n`cu bvucf&nhchjf:u fgjf¼:w;cvuï½f
nu\nkjfukw6!w;gjf1gif&nvbphikjbp!wucfvhx
çhn
"S
;f`fgnB¦cgibp`c:bpcvfr\kfnBkcbv`
S
!&n`f0ucw;`cfyÄ!wQucf:pvbp`
S
3kjcfbv`kjfgO§¨nf0gjf
_S
;bpw;`Ä#n
kgnB`chjbekbpw`n&Äfg
#X
tcf:gjfÚhiw;f
vu
ibp`kjfgj!fubnBkjf|f\nkbpw`
wFT
¨fBx
xS
xvrkjcf vbp`cfngjb
>Q
fu
`O
|w;ek
Q
n`c`yf\n
kbpw`
yU
|bphthjwvd;f:ur¢hjf:f3ì1w;phif
"l
«
qn
onB`cu#¥1png
l
&ª
&n
°x
r
fnBhjhjfkcbvhÚn&Ä;f:gkjw6\n&d;fhin,hiÄ!fkgOÄ;r
k\nBkybph:r¦kjcfcngikjbpvf6ucbphOkgjbvckjbpw;`æbphw`chikn`k3w;`ïhicgi§¨nBfhy\ngjnpvfkwkfbp`kjfgi§¨nBfx
zT
N
cbph
bph
S
;f:`cfgibp&nBpvÄkjcf6&nhif
FX
tf`cfd;fgkf!:cgidBnBkjcgjf-wB§Mkjcf-bp`kf:gi§¨n:f-bph1hinvo:w;cngjf:uHkjw/kcf
gjf:bpcgiwQn¾wB§Àkcf1!f&n`§ gjff1cnBk
yU
àx8Áaf:`cfBrckcfhi\n:f1ww;gjucbv`\nBkjfgjf:ucc:fhÚkw
v{
Crkjcfucbvhikn`cf
kwkjcfbv`kfgO§¨nfBxaç§ kf:gahi&nvbp`
S
bvkpbv¡f
}| ~
r
X
tcf:gjf
`
bphtkcfyw;gjufgn
&S
;`bvkucfw§kf!f&n`,§ gjff
\nBk¾r\w;`cf\nhÚkw6hiw;vdfkjcf1§ w;pvw
X
tbp`
S
3f:\nBkbvw;`
T U%
|q

X
tbek
{hl
ZU
n`cu
T^q+qU7
T
°
ZRZU
T U^ p
í
X
tcfgif
`
bvhtkjcf0w;!½w`cf`kw§okjcf0ccp¡/dfvwQ:bvkļ`cwgjn¾kw!kcfbv`kjfgO§¨nfBr

íkjcf
VO
|w;vk
RQ
n`c`
w;½f:gnBkjw;gpbv`cf&ngib
8Q
:fuHngiw;c`cuæhjw;!f6pw&n$#n
/X
|f:pvbn`æn`cu
kcf!ucbphOkgibpckjbpw;`§ `c:kjbpw;`æw;-
ckf:u¼bp`!kcf
PO
|w;vk
RQ
n`c`gjf
eS
bpw;`x
N
cbphMcgjw;pf hicw;cvu/fhjwvd;f:unBkMf&n¼bv`kjfgO§¨nf
9u
if:p
8w
0w;g
u
if:hj
w
x ç ubpgjf::khjwpkjbpw;`,Ä,n`Ä¡bv`cuwB§$bvkjfgnkbvdf1fkcwu#hiff:h3c#kjwQw6fàf`hjbvdfkw
ucw1kcbvhxoë`3§¨nB:k&rw`cfÚbph`wk$gjfnpeÄ0bp`kf:gjfhOkf:ubv`kcf § phiw;pQkbpw`¯ÀkcfÚw;`vÄyw;
f
fkh$w§bv`kjfgifhik
ngjfkcfynhOÄQ!kjwkbv0hOknBkjfh:r¾b xfx
TRZU
Ún`ukfyw;Qk
S
;w;bv`
S
!ucbphOkgjbvckjbpw;`
T
¨
ZU^Dh
x
ë`cucff:ur½kjcf0w;gigjfkw;c`cucngiÄ:w;`cucbekbpw`chÚ§ w;gÚkcf
VS
nhuÄ`\n!bphtf:cnBkbvw;`chnB`cukjcfybv`
S
;w;bv`
S
ucf`chibvkjbpfhMnBk8kfw;c`cu\nBgiÄ6w§½kcf
O
|w;ek
Q
n`c`6gif
eS
;bvw;`n`f
BX
tgjbvkikf:`bv`!kjfgj!hw§¾kjcw;hjfa\n`Q
kbvkjbpf:hÚw;`cvÄx
r
Óf8hjcnp;ufhj:gjbv½f8bp`1kjcbphÀ\nB½f:gCn`c!fgibp&nB;cgjwf:uccgif
X
tbp0w;!ckjfh
f
chikCkjcw;hjf8\n`kjbvkbvfh
Ächibp`
S
-n3|\ncn`Q®8`hj¡w
&S
3kÄQffàcn`chjbvw;`/kw3nccgiw¤QbvnBkjfkjcfhiw;pkjbpw;`¾x
N
cf1!f:kjcwQubph
hjff:`kw!w;`dfg
RS
fd;f:giÄ,§¨nhika`cf:gjbv&nvvÄ;xMë khiff:hkw
gS
bvd;fyn:cgjnBkfygjfhicvkjh
X
tcf:`w\nBgjfu
kw/kf6n¤dBnbvnpf0fQcpbvbekhiw;pkjbpw;`hbp`hiw;!f3hjf:bnnhjf:hn`cukw¼gifhicvkjhw;knbp`cf:uÄ!w;gjf
ucbpgif:k|hjbv3cnkbpw`!hicf!fh:x
N
cbphM`f:gjbpn¢cgjwf:uccgifbphbp`chicbpgifuÄ!kf
X
Mw;gj¡6w§C}tbp`
ZS
;fbvhjf`
l
ú
qn
r;wgjb
8S
bp`\nvvÄnbp!funBkhiw;vdbv`
S
akjcf w;`cfàhi½f:fu3kgjn`chi½w;gOkf:cnBkbvw;`
`X
tbvkj3bphiwkgiw;cbvMhi&nBkikfgibp`
S
X
tbvky§ cppbv`cf
4S
fw;!f:kjgiÄ

bp`kjcbph¦hjf:bn&nhifr}tbp`
S
fbphif`
`X
|nh8npfMkjw
S
;bed;f naw;`d;f:g
RS
;f:`cfcgiwQw§
§ w;gtcbpht!f:kwQur
X
tbppf1w;bv`kjbp`
S
6w;Qkkj\nBkbvkthicw;cvuf1dBnpbvu,bv`w;gif
S
;f`cf:gnC:w;`kfkjhx
N
cf
a
\gjhOk8hikf:wB§½wcg!f:kwQu-bv`3kcfÚhi½f:bnBc&nhif
=
bvhhjw
X
t`6kwf fcbedBnpf:`k$kjwkcfÚhiwBnpvfu
dnBgjbnkbpw`\nfkcwuchuf:d;f:pw;fu6Ä6|f:gj:b
8S
;`\nB`cb
l
ª
&n
°rìwphjf
l
ú¤
n
\n`u¿Àw¤ÄnBp¡nr;z\f:g
RQ
b
>S
;fg
=l
ú
n
¢n`cu
chjf:u § w;gucfkfgibv`cbp`
ZS
/kcf6hjvbpHw;c`cu\nBgiÄ:wQf
^
:bpf:`kjh0§ wgkjcf!èn&dbpf:gÂkw;¡Bfh0f\nBkjbpw;`xz\w;g
wkcf:g0nccgiwncf:hykw¼kjcf`c!fgibpnhjwpkjbpw;`Hw§kcfnw¤d;f!\nv§Mhjcnf!cgjwcpf:
X
|f!gjf§ fg1kw
çw;¡b roÂQw;`f
l
en
°r$|w;giw;`
l
q
qn
°rÂQbvf
_X
MfgOk&r
N
cw;nh
[l
¤«
qn
Mn`u § w;g0nnBkjcfnBkbv&n¦bp`d;f:hikjb
8S
nBkjbpw;`Hkw
çgikjcgrc|fgj:b
8S
;`cn`cb
#l
{
qn
°r|fgj:b
8S
;`cn`cb
#l
{
qn
°r\|wgjw;`f:kÚnB x
Bl*n
°rcì1gjf:f`½f:g
RS
3fkÚn°x
Bl
;
_n
¾n`cuÂbpf
_X
MfgOk&r
N
cw;nh
Vl
ú¤«
n
x
N
cbpht\nfgtbvhÚw;g
RS
nB`cb
8Q
:fu,nh § w;vpw
X
th¯
ë`H|\nkjfgr
X
tcf:gjf
vX
Mffànbv`#kcfyfkcwu§ wgn#ucbvf:`chjbvw;`\nÀ!wQufCf\nBkjbpw;`¾r¾nh
3X
|f:p

nhybv`ï|cnkf:g©Qr
jX
tcf:gjf6kcf© ucbp!f`chibpw;`cn
BT
¨bv`d;fvwQ:bvkÄ
ZUO
Úì¥ f\nBkjbpw;`æbph:w;`chjbvucfgifur
jX
|f
cgjwf:fu#bv`/kcf1§ w;vpw
X
tbp`
ZS
3hiÄhikjfnBkbv
X
n&Ä¯
mongOkybv`kjgjwucc:fhÚkcff:cnBkbvw;`ch
e
mongOk!ufhj:gjbv½f:hakf!f:kwQu,§ w;gtw;!ckjbp`
S
6kcfnhiÄ!kwBkbp0hiknBkf:hn`ukf
hu
jnv½f:ucw!w;½f:gO
nBkw;g
kw`c
hjffkf0uf
_a
\`cbekbvw;`¼½f:pw
X¡c
§ wg
=p
_
Z
mongOk ©hjf:bnvb
8Q
f:h$kwykjcf&nhif

ynB`cu:w;cngjf:hkjcfagifhicvkjh
X
tbek6kcw;hifawB§¾kfdBngibnBkjbpw;`\nB
fkcwu
D
mongOkaª6ucbvhj:chjhifhakjcf`cf:gjbv&ngifhicvkjhx
¢
L
A¾7)& %(!%3
¤£

a 3%%
¦¨§
¼0$!%
ë`ïkcbvhyhif:kjbpw;`
YX
Mf/chif¼nhibp!cpf!hiknBkbvw;`\ngOÄ :ubp!f`chibpw;`\nB$wucf
4O
|w;ek
Q
:n`` f:cnBkbvw;`Ókw
ucfhigjbv½f,w;cg-`c!fgibpnÚcgjwf:uccgifx ë`Û|\nBkf:g©kbph-cgiwQ:fuccgif
dX
tbvpM½f,ncpbpf:u kwkcf
pbp`f&ngib
8Q
f:u
}O
Úì¥ f\nkbpw`
dX
tbek,©ubp!f`chibpw;`\nBdfpwbekÄ/hi\nfBx
©
G
«
ïÍP
¬¯®
ÆXoÌ\ÉYJ|Õ
|w;`chjbvucfgÚkjcf1§ w;pvw
X
tbv`
S
3hOknBkjbpw;`\nBgiÄ/f:\nBkbvw;`bp`,n-\ne§ohi\nf
TU%
|q
4°
i±³²
´
±µ²
´
T
°
ZU
T U^ p
í
X
tbvk
}{ml

ZU^"hdh
x8Áaf:gjf
X
Mfyucf:`cwkjfu#Ä
±
kcf:f`kf:gjfu¾r½gifucc:fu#n
/X
|f:pvbn`
±
T
¶jU·
²
´¸
{¹T
°Fº
´
U
tn`cu
pX
Mfuf
_a
\`cf
g¨»z
¯
½¼
¾
»iT U%¿
¢r\be§
»
æbvhabv`kjf
eS
;gjncvfx
N
cf0§ w;pvw
X
tbv`
S
cgjw;w;hibvkbvw;` gjf:&nvph3kjcffhjhif`kbpnph6w§kf,fàQbphikjf`c:fr `cbpcf:`cfhihn`uínhOÄkjwkbv¼½f:\n&dbpw;g
gjfhicvkjhnpgif&nuÄ¡`cw
X
t`§ w;g kjcbphthjbvpf!wQuf rQhjf:fy¥nfg
Vl
¤©
qn
+nB`cuì1gjf:f`fg
RS
!f:kan°x
Bl
;
_n
°x
À
·
$·º
+ÂÃÂ
¨·
Ä
¨]
bÆÇ`È
5
ÉËÊ?Ì^ͤÉÊ?Ì}ÎÏ^ÐqÑ&Ì`ÒÓÐ&ÏeÔ8Ì^ÕÖÊZÎq×VØ
ÚÙ
TkT
O
PÜÛ ÛU%¿U[ÎzÝ/Í?Þ ßeÝ?Ì
×ÐqÔÝÉ ÞÐqÍ
zÙ=àFTJ¿0{Ù
TRT
Y
=áÛ ÛUk¿URU_âÆÇã
Ò
hÉËÊ?Ì^ÓÌ"Ìkä0Þ8×^ÉË×AÎåÎ&ÞËÍzÎ[ÝÍ?Þ ßeÝ?Ì1×ÐqÔÝÉ ÞÐqÍYÐqÍæÌ
ÉÊ?Ì=ç4Ý*ä
¼
T 1¤U
TË{U
±
²
´
¿èBé#Ê/ÞæÊÞ8×AÞËÍê/ÌÒ?Ì^Íê/Ì^Í?ÉÐÇ{Dè3Þ8×"Îq××^Þ(å&ÍÌRêdÎ&ÍmÎ&Ó_ÏeÞËÉ ÓRÎ&Óë}ÑqÎ&ÔÝ?Ì
ì
íâ
î
ÐqÓÌÐqÑ&Ì^Ó
T{RZU;ï ð
à
±
²
´
Îq×B{}ï ¡èé#Ê?Ì^ÓÌð
à
íâ
çh fànbv`cfu/bv`kfbp`kgiwQuc:kjbpw;`r§ w;gkcfaccgjw;hif1w§Cucw;nbp`!ucf:w;!½whjbvkjbpw;`h
X
Mfngjfabp`kf:gO
fhikjfuw;`cvÄbp`/kjcf0nhiÄ!kwBkbphiknkf
à
n`ubv`/kcf1gif
_W
\f::kf:u#ucf:`chjbekÄ
T
¨
ZU^mp
íx
ir
Óf
hj\nv¦np
Pu
jnv½f:ucw/w;fgjnBkwg
Rw
kjcf3vbp`cfngaw½f:gnBkjw;g
T
¨
ZU=ñï
T
°
Z
°
°
*U^RòY
Qx
Pr
Óf
X
tbpp½`cw
X
ãucf:hjgibpf0n6`c!fgibpncgiwQ:fuccgif0kjw6w;!ckjfkjcfhif0dBnvcfh:x
©
G
©
«
ÓÍPUÅWÆ1ÇÈPCZ¢ÉOÊÀX8L!Ë PÌcÍJÎÐÏJZ
¤óáôöõ
N
cfnbv`bpucfnfbp`cukf!f:kjcwQuHbvhkwhjw;ed;f-kf
"S
;nhuÄ`\n!bphf:cnBkbvw;`chnhihjwbnkfuHkw
kcf¼!wQuf
4O
|w;vk
RQ
n`c` f\nBkjbpw;` n`uïkcf:` kjwchif/kcf,|\nBcnB`QY®$`chi¡w
0S
fàcn`chjbvw;` nh-n`
nccgiw¤QbvnBkjf1hjw;vkbvw;`x
©

÷
·
ø.ÁúùÃûZÃÂ
·
Ä
í·
yüBÃý
û
cº:´
ø.ÁÃ
¤·
?ÃÂ þ
^ÃûZÃ
¤³º»
ë`chikjf&nuw§
TU%
|q
4°
i±³²
´
±µ²
´
¯
_
T
°
ZU
T U^ p
í
T
Qxe
U
w;`chibpucf:gÚkcf0nu
f
wbp`ktf\nBkjbpw;`
°
ToU%
|+ÿ
ÿ3°
ÿ ±³²
´
±³²
´
A
Û
ÿ
T
¨
ZU
Z Po
í
T
Qx~
0U
Áafgifr¢n:w;giucbp`
ZS
3kw3kf1cgjw;w;hibvkbvw;`¼nw¤d;fBr\n`,nucucbekbvw;`\n
?W
\Q¼w;`cubvkbvw;`/bvh `cff:ucfu¾x
r
fck
ÚTU
±µ²
´
ÿ
N
cf-chjcn¦§ w;gi2w§$kcf3n½w¤df-f\nBkjbpw;`bvhhiff`HÄ,kgnB`chi§ w;gibv`
Sg9ï
°
y3hï
°
Cr
X
tcbv
S
;bvdfh
ToU%
|+ÿ
ÿ3°
ÿ ±
²
´
±
²
´
p
í
ÿ
T
°
ZU
 o¯
_
T
Qx{©
U
ToU
ÿ7±µ²
´
°
N
cbphÚf:cnBkbvw;`
[X
tbpp½`cw
X
Òfhjw;ed;f:unBccgjw&QbpnBkjfvÄx
#r
f1cgjwf:funhÚbp`¼kf0|\ncn`Q®8`hj¡w
&S
fQ\n`chibpw;`,!f:kwQux$ë`kjf
eS
;gjnBkbv`
S
-kcff\nkbpw`w¤d;f:gÚkcf1d;f:pwbekļhj\nBf
S
;bvdfh
|
ÚTU
ÿ ±
²
´
|
¤
ÿ ±
²
´
b
|
ÿ ±
²
´
N
cfyn:gjw;hiw;cbv1wf:`k bph
¯
ÿ ±³²
´
N
cfy:w;`chifgidBnBkjbpw;`f:cnBkbvw;`bvh kcf:`
|
ò
ÿ ±
²
´
b
|
sf
_a
\`cbv`
S"
ÿ
¯
\ÿ3°
ÿ ±
²
´
±
²
´
r\w;`cf
S
;fkh:r
X
tbvk
}
±
²
´
3T 
±
²
´
U
n`cu
.T
x~©
U
à¯

±
²
´
ÿ
3T
±
²
´
U
ÿ
ò
±
²
´
ÿ
á°
|
¤
±
²
´
TU
ÿ
Áafgif
1X
Mfhjchikbekkjf1kcf
Q
f:gjwkj#w;giucfgtnBccgjw&QbpnBkjbpw;`/§ w;g
ÿ
ÿ

±
²
´
¯
¤
±
²
´
ÿ
á°
|
T¤
±
%U
°

|
ò
±
Ú°
|
N
cbphtgjf:hjcekhtbp`

|
°
|
Z p
í
ª

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an asymptotic-induced scheme for nonstationary transport equations with the diffusion scaling is developed, which works uniformly for all ranges of mean-free paths.
Abstract: An asymptotic-induced scheme for nonstationary transport equations with the diffusion scaling is developed. The scheme works uniformly for all ranges of mean-free paths. It is based on the asymptotic analysis of the diffusion limit of the transport equation. A theoretical investigation of the behavior of the scheme in the diffusion limit is given and an approximation property is proven. Moreover, numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.

171 citations

Journal ArticleDOI
TL;DR: In this article, the micro-macro decomposition is extended to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics and two main improvements are presented: 1) a self-consistent electric field is introduced, which induces a specific discretization in the velocity direction, and represents a wide range of applications in plasma physics.
Abstract: In this work, we extend the micro-macro decomposition based numerical schemes developed in [3] to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic (equilibrium) part with the remainder part. A suitable discretization of this micro-macro model enables to derive an asymptotic preserving scheme in the diffusion and high-field asymptotics. In addition, two main improvements are presented: On the one hand a self-consistent electric field is introduced, which induces a specific discretization in the velocity direction, and represents a wide range of applications in plasma physics. On the other hand, as suggested in [30], we introduce a suitable reformulation of the micro-macro scheme which leads to an asymptotic preserving property with the following property: It degenerates into an implicit scheme for the diffusion limit model when $\varepsilon\rightarrow 0$, which makes it free from the usual diffusion constraint $\Delta t=O(\Delta x^2)$ in all regimes. Numerical examples are used to demonstrate the efficiency and the applicability of the schemes for both regimes.

78 citations


Cites methods from "A Numerical Method for Computing As..."

  • ...Finally, we need to determine the consistent boundary condition for the diffusion model; the exact condition is given by [8] but a good approximation is given by (see [16, 24, 25, 29])...

    [...]

Journal ArticleDOI
TL;DR: In this article, a numerical scheme for the nonstationary Boltzmann equation in the incompressible Navier-Stokes limit is developed, which works uniformly for all ranges of mean free paths.
Abstract: A numerical scheme for the nonstationary Boltzmann equation in the incompressible Navier--Stokes limit is developed. The scheme is induced by the asymptotic analysis of the Navier--Stokes limit for the Boltzmann equation. It works uniformly for all ranges of mean free paths. In the limit the scheme reduces to the Chorin projection method for the incompressible Navier--Stokes equation. Numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.

66 citations

Journal ArticleDOI
TL;DR: An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion scaling is developed and works uniformly for all ranges of mean free paths.
Abstract: An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done using quadrature points equivalent to a moment expansion method. Numerical results for different physical situations are presented.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors deal with domain decomposition methods for kinetic and drift diffusion semiconductor equations and give accurate coupling conditions at the interface between the kinetic and the drift diffusion domain.
Abstract: This paper deals with domain decomposition methods for kinetic and drift diffusion semiconductor equations. In particular accurate coupling conditions at the interface between the kinetic and drift diffusion domain are given. The cases of slight and strong nonequilibrium situations at the interface are considered and numerical examples are shown.

48 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a spectral numerical scheme for computing the asymptotic states for linear half space problems is described in the case of a simple transport equation and the linearized Bhatnagar-Gross-Krook (BGK) model.
Abstract: A spectral numerical scheme computing the asymptotic states for linear half space problems is described in the case of a simple transport equation and the linearized Bhatnagar-Gross-Krook (BGK) model. This method seems to be very efficient and the results are in good agreement with those obtained by more direct computations and by other authors.

16 citations

Journal ArticleDOI
TL;DR: In this article, the solution of boundary value problems which are described by the linear integrodifferential equation delta xu/delta t(t, x) + u (t,x) - 1/..pi../sup 1///sup 2/ infinity exp(-y/sup 2/) u(t,y) dy = 0, where t epsilon J C R, x epsalon R is discussed.

11 citations

01 Jan 1993
TL;DR: In this paper, the authors discuss how the kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary, where the boundary conditions arise from the requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from a kinetic equation (held on the other side), be satisfied.
Abstract: We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.

10 citations


"A Numerical Method for Computing As..." refers methods in this paper

  • ...A more re ned approach to nd the correctcoupling conditions is given for example by Illner and Neunzert [12].1 The problem that we address in this article is to nd as explicit as possible and yetaccurate matching relations between the kinetic and gas dynamics regions....

    [...]

  • ...Phys., Vol 1, No. 2, 1969[5] C. Cercignani, Mathematical Problems in the Kinetic Theory of Gases, D.C. Packand H. Neunzert, eds., 129, Lang, Frankfurt, 1980[6] C. Cercignani, The Boltzmann Equation and its Applications, Springer, 1988[7] F. Coron, Computation of the Asymptotic States for Linear Halfspace Problems,TTSP 19(2), 89, 1990[8] F. Coron, F. Golse, C. Sulem, A Classi cation of Well-posed Kinetic Layer Problems,CPAM, Vol. 41, 409, 1988[9] F. Golse, Applications of the Boltzmann Equation within the Context of Upper At-mosphere Vehicle Aerodynamics, Computer Meth. in Engineer. and Appl....

    [...]

  • ...We wish to thank Profs. C. Bardos, H. Neunzert and R. Illner fortheir hospitality on these occasions....

    [...]

  • ...A more re ned approach to nd the correct coupling conditions is given for example by Illner and Neunzert [12]....

    [...]

  • ...Vol.75, 299, 1989[10] F. Golse, Knudsen Layers from a Computational Viewpoint, TTSP 21 (3), 211, 1992[11] W. Greenberg, C. van der Mee, V. Protopopescu, Boundary Value Problems in Ab-stract Kinetic Theory, Birkh auser, 1987[12] R. Illner, H. Neunzert, Domain Decomposition: Linking Kinetic and AerodynamicDescriptions, AGTM preprint 90, Kaiserslautern, 1993[13] H.G. Kaper, A Constructive Approach to the Solution of a Class of Boundary ValueProblems of Mixed Type, J. Math....

    [...]

Journal Article
TL;DR: New coupling conditions for nonequilibrium situations at the interface are developed by considering interface layers between the domains, which leads to kinetic linear half space problems.

7 citations