scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Phase I and Pharmacological Study with Imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a Novel Ruthenium Anticancer Agent

01 Jun 2004-Clinical Cancer Research (American Association for Cancer Research)-Vol. 10, Iss: 11, pp 3717-3727
TL;DR: The maximum-tolerated dose (MTD), profile of adverse events, and dose-limiting toxicity of NAMI-A in patients with solid tumors were determined and the ruthenium pharmacokinetic analysis revealed a linear relationship between dose and area under the concentration-time curve (AUC) of total and unbound rUThenium.
Abstract: Purpose: NAMI-A {H 2 Im[ trans- RuCl 4 (DMSO)HIm] or imidazolium- trans- DMSO-imidazole-tetrachlororuthenate} is a novel ruthenium-containing compound that has demonstrated antimetastatic activity in preclinical studies. This Phase I study was designed to determine the maximum-tolerated dose (MTD), profile of adverse events, and dose-limiting toxicity of NAMI-A in patients with solid tumors. Furthermore, the ruthenium pharmacokinetics (PK) after NAMI-A administration and preliminary antitumor activity were evaluated. Patients and Methods: Adult patients with solid tumors received NAMI-A as an i.v. infusion over 3 h daily for 5 days every 3 weeks. PK of total and unbound ruthenium was determined during the first and second treatment using noncompartmental pharmacokinetic analysis. The total accumulation of ruthenium in WBCs was also quantified. Results: Twenty-four patients were treated at 12 dose levels (2.4–500 mg/m 2 /day). At 400 mg/m 2 /day, blisters developed on the hands, fingers, and toes. At 500 mg/m 2 /day, blisters persisted from weeks to months and slowly regressed. Although no formal common toxicity criteria (CTC) grade 3 developed, painful blister formation was considered dose limiting. Because the first signs developed at 400 mg/m 2 /day, the advised dose for further testing of NAMI-A was determined to be 300 mg/m 2 /day on this schedule. PK analysis revealed a linear relationship between dose and area under the concentration-time curve (AUC) of total and unbound ruthenium ( R 2 = 0.75 and 0.96, respectively) over the whole dose range. Plasma clearance of total ruthenium was 0.17 ± 0.09 liter/h, and terminal half-life was 50 ± 19 h. The volume of distribution at steady state of total ruthenium was 10.1 ± 2.8 liters. The accumulation of ruthenium in WBC was not directly proportional to the increasing total exposure to ruthenium. One patient with pretreated and progressive nonsmall cell lung cancer had stable disease for 21 weeks. Conclusion: NAMI-A can be administered safely as a 3-h i.v. infusion at a dose of 300 mg/m 2 /day for 5 days, every 3 weeks.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.
Abstract: Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.

1,047 citations

Journal ArticleDOI
TL;DR: The preclinical and early clinical development of KP1019 - from bench to bedside - is recapitulated and promising activity against certain types of tumors is observed.

875 citations

Journal ArticleDOI
TL;DR: The recent achievement of oxaliplatin for the treatment of colon cancer should not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs as discussed by the authors.
Abstract: Triggered by the resounding success of cisplatin, the past decades have seen tremendous efforts to produce clinically beneficial analogues. The recent achievement of oxaliplatin for the treatment of colon cancer should, however, not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs. Strategies opening up new avenues are increasingly being sought using complexes of metals other than platinum such as ruthenium or gallium. Based on the chemical differences between these metals, the spectrum of molecular mechanisms of action and potential indications can be broadened substantially. Other approaches focus on complexes with tumour-targeting properties, thereby maximizing the impact on cancer cells and minimizing the problem of adverse side effects, and complexes with biologically active ligands.

729 citations

Journal ArticleDOI
TL;DR: This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties, and highlights the catalytic activity and the photoinduced activation of r Ruthenium (ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Abstract: Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.

727 citations

Journal ArticleDOI
TL;DR: What the future holds for metal-based drugs, in particular anti-metastasis drugs,In these enlightened times of the post genomic era is discussed.
Abstract: The discovery of new metal-based antitumour drugs, whether cisplatin derivatives or those based on other metals, has been largely based on cell viability assays (IC50 values) and compounds that bind to DNA. This approach has been applied for more than 30 years during which time very few new drugs have entered clinical use. In this article we discuss what the future holds for metal-based drugs, in particular anti-metastasis drugs, in these enlightened times of the post genomic era.

702 citations

References
More filters
Journal ArticleDOI
TL;DR: A rapid, safe and inexpensive method was developed to simplify the deprotein-ization procedure that yielded quantities comparable to those obtained from phenol-chloroform extractions, rendering the entire process of RFLP analysis free of toxic materials.
Abstract: One of the obstacles encountered when extracting DNA from a large number of samples is the cumbersome method of deprotein-izing cell digests with the hazardous organic solvents phenol and isochloroform. Several other non-toxic extraction procedures have been published, but require either extensive dialysis (1) or the use of filters (2). A rapid, safe and inexpensive method was developed to simplify the deprotein-ization procedure. This method involves salting out of the cellular proteins by dehydration and precipitation with a saturated NaCl solution. Buffy coats of nucleated cells obtained from anticoagulated blood (ACD or EDTA) were resuspended in 15 ml polypropylene centrifugation tubes with 3 ml of nuclei lysis buffer (10 mM Tris-HCl t 400 mM NaCl and 2 mM Na 2 EDTA, pH 8.2). The cell lysates were digested overnight at 37°C with 0.2 ml of 10Z SDS and 0.5 ml of a protease K solution (1 mg protease K in 1Z SDS and 2 mM Na2EDTA). After digestion was complete, 1 ml of saturated NaCl (approximately 6M) was added to each tube and shaken vigorously for 15 seconds, followed by centrifugation at 2500 rpm for 15 minutes. The precipitated protein pellet was left at the bottom of the tube and the supernatant containing the DNA was transferred to another 15 ml polypropylene tube. Exactly 2 volumes of room temperature absolute ethanol was added and the tubes inverted several times until the DNA precipitated. The precipitated DNA strands were removed with a plastic spatula or pipette and transferred to a 1.5 ml microcentrifuge tube containing 100-200 pi TE buffer (10 mM Tris-HCl, 0.2 mM Na 2 EDTA, pH 7.5). The DNA was allowed to dissolve 2 hours at 37°C before quantitating. The DNA obtained from this simple technique yielded quantities comparable to those obtained from phenol-chloroform extractions. The 260/280 ratios were consistently 1.8-2.0, demonstrating good deproteinization. Restrictions were performed using a number of different enzymes requiring high, medium or low salt concentrations, all resulting in complete restriction. This procedure has been used in our laboratory on several thousand blood samples for parentage, population and forensic studies. This technique is used with our non-isotopic hybridization procedures (3) rendering the entire process of RFLP analysis free of toxic materials.

19,905 citations


"A Phase I and Pharmacological Study..." refers methods in this paper

  • ...DNA was isolated from these WBC using a high salt extraction method (29)....

    [...]

Journal ArticleDOI
TL;DR: A model by which a combined assessment of all existing lesions, characterized by target lesions and nontarget lesions, is used to extrapolate an overall response to treatment is proposed, which is largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines.
Abstract: Anticancer cytotoxic agents go through a process by which their antitumor activity-on the basis of the amount of tumor shrinkage they could generate-has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical research combined forces to tackle the review of these criteria on the basis of the experience and knowledge acquired since then. After several years of intensive discussions, a new set of guidelines is ready that will supersede the former criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines. This special article also provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified, briefly within the guidelines and in more detail in Appendix I. All other aspects of response evaluation have been discussed, reviewed, and amended whenever appropriate.

14,926 citations

BookDOI
01 Jan 1991
TL;DR: The resistant cells repair interstrand crosslinks more efficiently than the sensitive ones from the DHFR gene, the multidrug resistance gene and from the inactive oglobin gene, however, these ovarian cancer cell lines do not differ in their ability to repair cisplatin intrastrand adducts from these genes.
Abstract: By Vilhelm A. Bohr, Eddie Reed*) and Wei ping Zhen Laboratory of Molecular Pharmacology and *)Medicine Branch, National Cancer Institute, Bldg. 37 Rm 5C-25, NIH, Bethesda, MD 20892 We have developed techniques to study the DNA damage formation and repair of cisplatin lesions in individual genes. The frequency of intrastrand adducts and interstrand crosslinks can be determined in restriction fragments within genes or in non-transcribed gene regions. In hamster cells, intrastrand adducts are repaired faster from the essential dihydrofolate reductase (DHFR) gene than from an inactive region. In contrast, interstrand crosslinks are repaired at a similar rate from the active and inactive genomic regions. In an attempt to study the role of DNA repair in drug resistance, we have examined the repair of these lesions in certain important genes in cisplatin sensitive and resistant human ovarian cancer cells. The resistant cells repair interstrand crosslinks more efficiently than the sensitive ones from the DHFR gene, the multidrug resistance gene and from the inactive oglobin gene. However, these ovarian cancer cell lines do not differ in their ability to repair cisplatin intrastrand adducts from these genes.

435 citations

Journal ArticleDOI
TL;DR: Strong relationships between carboplatin renal clearance, glomerular filtration rate, area under the plasma concentration-time curve (AUC) of filterable platinum and severity of thrombocytopenia have prompted dose adjustment according to renal function.
Abstract: Since the discovery of the biologically active platinum complexes 30 years ago, 2 agents have become widely established in clinical oncology practice. Both cisplatin and carboplatin are platinum(II) complexes with 2 ammonia groups in the cis- position. However, they differ in their solubility, chemical reactivity, dichloride or alicyclic oxygenated leaving groups, pharmacokinetics and toxicology. Cisplatin causes severe renal tubular damage and reduces glomerular filtration, and requires concurrent saline hydration and mannitol diuresis to eliminate potentially lethal and unacceptable damage to the kidneys. Carboplatin, at conventional doses, causes no decrease in glomerular filtration and only minor transient elevations in urinary enzymes. Cisplatin is the most emetic cancer drug in common use, while nausea and vomiting associated with carboplatin are moderately severe. Serotonin release from enterochromaffin gut mucosal cells and stimulation of serotonin 5-HT3-receptors mediates acute emesis. Selective inhibitors of the 5-HT3-receptor protect against cisplatin- and carboplatin-induced nausea and vomiting. Peripheral neurotoxicity is the most dose-limiting problem associated with cisplatin. Loss of vibration sense, paraesthesia and sensory ataxia comes on after several treatment cycles. Carboplatin, however, is relatively free from peripheral neurotoxicity. Audiometry shows cisplatin-induced ototoxicity in 75 to 100% of patients, which may be associated with tinnitus and hearing loss. Ototoxicity is rare with conventional dose carboplatin therapy. Monitoring hearing with audiograms may identify early signs before significant impairment occurs. Cisplatin causes mild haematological toxicity to all 3 blood lineages. Haematological toxicity is dose-limiting for carboplatin, with thrombocytopenia being a greater problem than leucopenia. Although carboplatin is not toxic to the kidney, renal function markedly affects the severity of carboplatin-induced thrombocytopenia. The major clearance mechanism of cisplatin is irreversible binding in plasma and tissues, while carboplatin is cleared by glomerular filtration. Metabolism of cisplatin to aqua, amino acid and protein species is extensive, whereas carboplatin exists mainly as the free unchanged form. Strong relationships between carboplatin renal clearance, glomerular filtration rate, area under the plasma concentration-time curve (AUC) of filterable platinum and severity of thrombocytopenia have prompted dose adjustment according to renal function. New analogues such as JM216 offer the potential advantages of oral administration and few nonhaematological toxicities. Analogues based on the diaminocyclohexane ligand have encountered problematic neurotoxicity.

297 citations


"A Phase I and Pharmacological Study..." refers background in this paper

  • ...Chronic low-level exposure to heavy metals can cause neuromuscular injury (2)....

    [...]

Journal ArticleDOI
TL;DR: The cytotoxicity of chloropolypyridyl ruthenium complexes of structural formulas, and the cytotoxic mer-[Ru(terpy)Cl3] exhibits a significant DNA interstrand cross-linking, point to a potential new class of metal-based antitumor compounds acting by a mechanism involving DNAInterstrandCrosslinking.
Abstract: The cytotoxicity of chloropolypyridyl ruthenium complexes of structural formulas [Ru(terpy)-(bpy)Cl]Cl, cis-[Ru(bpy)2Cl2], and mer-[Ru(terpy)Cl3] (terpy = 2,2':6'2"-terpyridine, bpy = 2,2'-bipyridyl) has been studied in murine and human tumor cell lines. The results show that mer-[Ru(terpy)Cl3] exhibits a remarkably higher cytotoxicity than the other complexes. Moreover, investigations of antitumor activity in a standard tumor screen have revealed the highest efficiency for mer-[Ru(terpy)Cl3]. In a cell-free medium, the ruthenium complexes coordinate to DNA preferentially at guanine residues. The resulting adducts can terminate DNA synthesis by thermostable VentR DNA polymerase. The reactivity of the complexes to DNA, their efficiency to unwind closed, negatively supercoiled DNA, and a sequence preference of their DNA adducts (studied by means of replication mapping) do not show a correlation with biological activity. On the other hand, the cytotoxic mer-[Ru(terpy)Cl3] exhibits a significant DNA interstrand cross-linking, in contrast to the inactive complexes which exhibit no such efficacy. The results point to a potential new class of metal-based antitumor compounds acting by a mechanism involving DNA interstrand cross-linking.

227 citations