scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A phase tracking system for three phase utility interface inverters

01 May 2000-IEEE Transactions on Power Electronics (IEEE)-Vol. 15, Iss: 3, pp 431-438
TL;DR: In this article, the phase tracking system of the three phase utility interface inverters is investigated in both continuous and discrete-time domains, and the optimization method is considered for the second order PLL system.
Abstract: The analysis and design of the phase-locked loop (PLL) system is presented for the phase tracking system of the three phase utility interface inverters. The dynamic behavior of the closed loop PLL system is investigated in both continuous and discrete-time domains, and the optimization method is considered for the second order PLL system. In particular, the performance of the three phase PLL system is analyzed in the distorted utility conditions such as the phase unbalancing, harmonics, and offset caused by the nonlinear load conditions and measurement errors. The tracking errors under these distorted utility conditions are also derived. The phase tracking system is implemented in a digital manner using a digital signal processor (DSP) to verify the analytic results. The design considerations for the phase tracking system are deduced from the analytic and experimental results.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations


Cites background from "A phase tracking system for three p..."

  • ...use one three-phase PLL [31], [32], [48], [49]....

    [...]

  • ...to extract the phase angle of the grid voltages [31], [33], [48],...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Journal ArticleDOI
TL;DR: In this article, real and reactive power management strategies of EI-DG units in the context of a multiple DG microgrid system were investigated. And the results were used to discuss applications under various microgrid operating conditions.
Abstract: This paper addresses real and reactive power management strategies of electronically interfaced distributed generation (DG) units in the context of a multiple-DG microgrid system. The emphasis is primarily on electronically interfaced DG (EI-DG) units. DG controls and power management strategies are based on locally measured signals without communications. Based on the reactive power controls adopted, three power management strategies are identified and investigated. These strategies are based on 1) voltage-droop characteristic, 2) voltage regulation, and 3) load reactive power compensation. The real power of each DG unit is controlled based on a frequency-droop characteristic and a complimentary frequency restoration strategy. A systematic approach to develop a small-signal dynamic model of a multiple-DG microgrid, including real and reactive power management strategies, is also presented. The microgrid eigen structure, based on the developed model, is used to 1) investigate the microgrid dynamic behavior, 2) select control parameters of DG units, and 3) incorporate power management strategies in the DG controllers. The model is also used to investigate sensitivity of the design to changes of parameters and operating point and to optimize performance of the microgrid system. The results are used to discuss applications of the proposed power management strategies under various microgrid operating conditions

1,531 citations


Cites methods from "A phase tracking system for three p..."

  • ...Input to the block is the local frequency , estimated by a conventional PLL using bus voltages [11] (see Fig....

    [...]

Journal ArticleDOI
TL;DR: In this article, a decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL) was proposed to detect the fundamental-frequency positive-sequence component of the utility voltage under unbalanced and distorted conditions.
Abstract: This paper deals with a crucial aspect in the control of grid-connected power converters, i.e., the detection of the fundamental-frequency positive-sequence component of the utility voltage under unbalanced and distorted conditions. Specifically, it proposes a positive-sequence detector based on a new decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL), which completely eliminates the detection errors of conventional synchronous reference frame PLL's (SRF-PLL). This is achieved by transforming both positive- and negative-sequence components of the utility voltage into the double SRF, from which a decoupling network is developed in order to cleanly extract and separate the positive- and negative-sequence components. The resultant DDSRF-PLL conducts then to a fast, precise, and robust positive-sequence voltage detection even under unbalanced and distorted grid conditions. The paper presents a detailed description and derivation of the proposed detection method, together with an extensive evaluation using simulation and experimental results from a digital signal processor-based laboratory prototype in order to verify and validate the excellent performance achieved by the DDSRF-PLL

1,169 citations


Cites background or methods from "A phase tracking system for three p..."

  • ...As mentioned earlier, the selection of this PLL control parameters is based on a small-signal analysis [16] in which it is assumed that ,...

    [...]

  • ...phase angle of the positive-sequence component are detected; 2) the detected positive-sequence voltages are distorted and unbalanced; and 3) the dynamic response of the system is significantly reduced [16]....

    [...]

  • ...A small-signal analysis justifying the selection of and is reported in [16]–[18] and briefly revised at then end of Section VI....

    [...]

  • ...These oscillations may be simply considered perturbations in the detection of and ; however the attenuation of these oscillations by means of conventional filtering techniques gives rise to the drawbacks exposed previously in Section II, hence this is not desirable [16]–[18]....

    [...]

Journal ArticleDOI
TL;DR: A new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies is presented.
Abstract: This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies. The proposed system is called MSOGI-FLL since it is based on both a harmonic decoupling network consisting of multiple second-order generalized integrators (MSOGIs) and a frequency-locked loop (FLL), which makes the system frequency adaptive. In this paper, the MSOGI-FLL is analyzed for single- and three-phase applications, deducing some key expressions regarding its stability and tuning. Moreover, the performance of the MSOGI-FLL is evaluated by both simulations and experiments to show its capability for detecting different harmonic components in a highly polluted grid scenario.

950 citations

References
More filters
Book
26 Jul 1989
TL;DR: In this paper, the authors present a simulation of power switch-mode converters for zero-voltage and/or zero-current switchings in power electronic converters and systems.
Abstract: Partial table of contents: Overview of Power Semiconductor Switches Computer Simulation of Power Electronic Converters and Systems GENERIC POWER ELECTRONIC CIRCUITS dc--dc Switch-Mode Converters Resonant Converters: Zero-Voltage and/or Zero-Current Switchings POWER SUPPLY APPLICATIONS Power Conditioners and Uninterruptible Power Supplies MOTOR DRIVE APPLICATIONS dc Motor Drives Induction Motor Drives Synchronous Motor Drives OTHER APPLICATIONS Residential and Industrial Applications Optimizing the Utility Interface with Power Electronic Systems SEMICONDUCTOR DEVICES Basic Semiconductor Physics Power Diodes Power MOSFETs Thyristors Emerging Devices and Circuits PRACTICAL CONVERTER DESIGN CONSIDERATIONS Snubber Circuits Gate and Base Drive Circuits Design of Magnetic Components Index

5,911 citations


"A phase tracking system for three p..." refers background in this paper

  • ...S increasing demands for the high quality, reliability, and usability of electric power source, the utility interface operation of power converters is often used in advanced power conversion and conditioning systems such as the static VAR compensators, active power filters, uninterruptible power supplies (UPS’s), and grid-connected photovoltaic or wind power generation systems [ 3 ]....

    [...]

Book
F. M. Gardner1
01 Jan 1966
TL;DR: This book represents the second edition of Gardner's widely known book on phaselock principles and applications, and Gardner has clearly written for the practitioner, providing the necessary information with a minimum of rigor and a succinct writing style.
Abstract: This book represents the second edition of Gardner's widely known book on phaselock principles and applications. As in the earlier edition (1966), Gardner has clearly written for the practitioner, providing the necessary information with a minimum of rigor and a succinct writing style. Still one senses there is no lack of appreciation for the bounty of highly technical literature on phaselock theory, as liberal literature citations are given throughout.

1,374 citations

Book
01 Jan 1996
TL;DR: In this article, a collection of 65 of the most important papers on phase-locked loops and clock recovery circuits is presented, with an extensive 40 page tutorial introduction and a comprehensive coverage of the field all in one self-contained volume.
Abstract: Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phaselocked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.

515 citations

BookDOI
01 Jan 1996
TL;DR: An understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise is gained.

368 citations

Journal ArticleDOI
TL;DR: Bounds on the position accuracy achievable in practical resolver-based position-sensing systems are determined from expressions for the position error reported by an R/D converter.
Abstract: Tracking resolver-to-digital (R/D) conversion has emerged as the most robust method for obtaining high-resolution position information from resolvers. When driven by ideal resolver signals, tracking R/D converters currently offer position resolutions up to 2/sup 16/ quantization intervals/period (16-b resolution), and accuracies to 2/sup 14/ intervals/period (14-b accuracy). The effects of nonideal resolver signal characteristics commonly encountered in practice are investigated. Expressions for the position error reported by an R/D converter due to amplitude imbalance, quadrature error, inductive harmonics, reference phase shift, excitation signal distortion, and disturbance signals are found. From these expressions, bounds on the position accuracy achievable in practical resolver-based position-sensing systems are determined. >

144 citations


"A phase tracking system for three p..." refers background in this paper

  • ...ious applications for the phase or position detecting [7]....

    [...]