scispace - formally typeset
Open AccessJournal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

A. L. Hodgkin, +1 more
- 28 Aug 1952 - 
- Vol. 117, Iss: 4, pp 500-544
Reads0
Chats0
TLDR
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Abstract
This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkinet al, 1952,J Physiol116, 424–448; Hodgkin and Huxley, 1952,J Physiol116, 449–566) Its general object is to discuss the results of the preceding papers (Section 1), to put them into mathematical form (Section 2) and to show that they will account for conduction and excitation in quantitative terms (Sections 3–6)

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Journal ArticleDOI

Complex networks: Structure and dynamics

TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Journal ArticleDOI

Impulses and Physiological States in Theoretical Models of Nerve Membrane

TL;DR: Van der Pol's equation for a relaxation oscillator is generalized by the addition of terms to produce a pair of non-linear differential equations with either a stable singular point or a limit cycle, which qualitatively resembles Bonhoeffer's theoretical model for the iron wire model of nerve.
Book

Dynamical Systems in Neuroscience

TL;DR: This book explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition, providing a link between the two disciplines.
References
More filters
Journal ArticleDOI

Potential, impedance, and rectification in membranes

TL;DR: A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures that shows qualitative agreement with the rectification properties and very good agreementwith the membrane potential data.
Journal ArticleDOI

Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo

TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Journal ArticleDOI

Measurement of current-voltage relations in the membrane of the giant axon of Loligo.

TL;DR: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments which are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it.
Journal ArticleDOI

The dual effect of membrane potential on sodium conductance in the giant axon of Loligo

TL;DR: This paper contains a further account of the electrical properties of the giant axon of Loligo and deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization.