scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A quantitative description of membrane current and its application to conduction and excitation in nerve

28 Aug 1952-The Journal of Physiology (Wiley/Blackwell (10.1111))-Vol. 117, Iss: 4, pp 500-544
TL;DR: This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre by putting them into mathematical form and showing that they will account for conduction and excitation in quantitative terms.
Abstract: This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkinet al, 1952,J Physiol116, 424–448; Hodgkin and Huxley, 1952,J Physiol116, 449–566) Its general object is to discuss the results of the preceding papers (Section 1), to put them into mathematical form (Section 2) and to show that they will account for conduction and excitation in quantitative terms (Sections 3–6)

Content maybe subject to copyright    Report

Citations
More filters
Book
21 Apr 2008
TL;DR: Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems.
Abstract: This book provides an introduction to the mathematics needed to model, analyze, and design feedback systems. It is an ideal textbook for undergraduate and graduate students, and is indispensable for researchers seeking a self-contained reference on control theory. Unlike most books on the subject, Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl strm and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. strm and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. They provide exercises at the end of every chapter, and an accompanying electronic solutions manual is available. Feedback Systems is a complete one-volume resource for students and researchers in mathematics, engineering, and the sciences.Covers the mathematics needed to model, analyze, and design feedback systems Serves as an introductory textbook for students and a self-contained resource for researchers Includes exercises at the end of every chapter Features an electronic solutions manual Offers techniques applicable across a range of disciplines

1,927 citations


Cites methods from "A quantitative description of membr..."

  • ...The Hodgkin–Huxley model was originally developed as a means to predict the quantitative behavior of the squid giant axon [100]....

    [...]

Journal ArticleDOI
TL;DR: The physical basis for electrical stimulation of excitable tissue, as used by electrophysiological researchers and clinicians in functional electrical stimulation, is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface.

1,875 citations

PatentDOI
TL;DR: ART 2, a class of adaptive resonance architectures which rapidly self-organize pattern recognition categories in response to arbitrary sequences of either analog or binary input patterns, is introduced.
Abstract: A neural network includes a feature representation field which receives input patterns. Signals from the feature representation field select a category from a category representation field through a first adaptive filter. Based on the selected category, a template pattern is applied to the feature representation field, and a match between the template and the input is determined. If the angle between the template vector and a vector within the representation field is too great, the selected category is reset. Otherwise the category selection and template pattern are adapted to the input pattern as well as the previously stored template. A complex representation field includes signals normalized relative to signals across the field and feedback for pattern contrast enhancement.

1,865 citations


Cites background from "A quantitative description of membr..."

  • ...(10) may also be shifted to the right, making f(x) = 0 for small x, as in Eq....

    [...]

Journal ArticleDOI
Xiao Jing Wang1
TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Abstract: Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.

1,774 citations

Journal ArticleDOI
TL;DR: The phenomenon of neural bursting is described, and geometric bifurcation theory is used to extend the existing classification of bursters, including many new types, and it is shown that different bursters can interact, synchronize and process information differently.
Abstract: Bifurcation mechanisms involved in the generation of action potentials (spikes) by neurons are reviewed here. We show how the type of bifurcation determines the neuro-computational properties of the cells. For example, when the rest state is near a saddle-node bifurcation, the cell can fire all-or-none spikes with an arbitrary low frequency, it has a well-defined threshold manifold, and it acts as an integrator; i.e. the higher the frequency of incoming pulses, the sooner it fires. In contrast, when the rest state is near an Andronov–Hopf bifurcation, the cell fires in a certain frequency range, its spikes are not all-or-none, it does not have a well-defined threshold manifold, it can fire in response to an inhibitory pulse, and it acts as a resonator; i.e. it responds preferentially to a certain (resonant) frequency of the input. Increasing the input frequency may actually delay or terminate its firing. We also describe the phenomenon of neural bursting, and we use geometric bifurcation theory to extend the existing classification of bursters, including many new types. We discuss how the type of burster defines its neuro-computational properties, and we show that different bursters can interact, synchronize and process information differently.

1,765 citations

References
More filters
Journal ArticleDOI
TL;DR: A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures that shows qualitative agreement with the rectification properties and very good agreementwith the membrane potential data.
Abstract: Impedance and potential measurements have been made on a number of artificial membranes. Impedance changes were determined as functions of current and of the composition of the environmental solutions. It was shown that rectification is present in asymmetrical systems and that it increases with the membrane potential. The behavior in pairs of solutions of the same salt at different concentrations has formed the basis for the studies although a few experiments with different salts at the same concentrations gave results consistent with the conclusions drawn. A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures. The equations have been solved for two very simple cases; one based on the assumption of microscopic electroneutrality, and the other on the assumption of a constant electric field. The latter was found to give better results than the former in interpreting the data on potentials and rectification, showing agreement, however, of the right order of magnitude only. Although the indications are that a careful treatment of boundary conditions may result in better agreement with experiment, no attempt has been made to carry this through since the data now available are not sufficiently complete or reproducible. Applications of the second theoretical case to the squid giant axon have been made showing qualitative agreement with the rectification properties and very good agreement with the membrane potential data.

2,685 citations

Journal ArticleDOI
TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Abstract: In the preceding paper (Hodgkin, Huxley & Katz, 1952) we gave a general description of the time course of the current which flows through the membrane of the squid giant axon when the potential difference across the membrane is suddenly changed from its resting value, and held at the new level by a feed-back circuit ('voltage clamp' procedure). This article is chiefly concerned with the identity of the ions which carry the various phases of the membrane current. One of the most striking features of the records of membrane current obtained under these conditions was that when the membrane potential was lowered from its resting value by an amount between about 10 and 100 mV. the initial current (after completion of the quick pulse through the membrane capacity) was in the inward direction, that is to say, the reverse ofthe direction of the current which the same voltage change would have caused to flow in an ohmic resistance. The inward current was of the right order of magnitude, and occurred over the right range of membrane potentials, to be the current responsible for charging the membrane capacity during the rising phase of an action potential. This suggested that the phase of inward current in the voltage clamp records might be carried by sodium ions, since there is much evidence (reviewed by Hodgkin, 1951) that the rising phase of the action potential is caused by the entry of these ions, moving under the influence of concentration and potential differences. To investigate this possibility, we carried out voltage clamp runs with the axon surrounded by solutions with reduced sodium concentration. Choline was used as an inert cation since replacement of sodium with this ion makes the squid axon completely inexcitable, but does not reduce the resting potential (Hodgkin & Katz, 1949; Hodgkin, Huxley & Katz, 1949).

2,315 citations

Journal ArticleDOI
TL;DR: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments which are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it.
Abstract: The importance of ionic movements in excitable tissues has been emphasized by a number of recent experiments. On the one hand, there is the finding that the nervous impulse is associated with an inflow of sodium and an outflow of potassiuim (e.g. Rothenberg, 1950; Keynes & Lewis, 1951). On the other, there are experiments which show that the rate of rise and amplitude of the action potential are determined by the concentration of sodium in the external medium (e.g. Hodgkin & Katz, 1949 a; Huxley & Stiimpffi, 1951). Both groups of experiments are consistent with the theory that nervous conduction depends on a specific increase in permeability which allows sodium ions to move from the more concentrated solution outside a nerve fibre to the more dilute solution inside it. This movement of charge makes the inside of the fibre positive and provides a satisfactory explanation for the rising phase of the spike. Repolarization during the falling phase probably depends on an outflow of potassium ions and may be accelerated by a process which increases the potassium permeability after the action potential has reached its crest (Hodgkin, Huxley & Katz, 1949).

1,569 citations

Journal ArticleDOI
TL;DR: This paper contains a further account of the electrical properties of the giant axon of Loligo and deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization.
Abstract: This paper contains a further account of the electrical properties of the giant axon of Loligo. It deals with the 'inactivation' process which gradually reduces sodium permeability after it has undergone the initial rise associated with depolarization. Experiments described previously (Hodgkin & Huxley, 1952a, b) show that the sodium conductance always declines from its initial maximum, but they leave a number of important points unresolved. Thus they give no information about the rate at which repolarization restores the ability of the membrane to respond with its characteristic increase of sodium conductance. Nor do they provide much quantitative evidence about the influence of membrane potential on the process responsible for inactivation. These are the main problems with which this paper is concerned. The experimental method needs no special description, since it was essentially the same as that used previously (Hodgkin, Huiley & Katz, 1952; Hodgkin & Huxley, 1952b).

1,547 citations