scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A quantum information processor with trapped ions

TL;DR: In this paper, a small-scale quantum information processor based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap is presented, which includes non-coherent operations allowing us to realize arbitrary Markovian processes.
Abstract: Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm.
Citations
More filters
Journal ArticleDOI
10 Jul 2014-Nature
TL;DR: First, the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts is observed, and second, using the ability to tune the interaction range in the system, information propagation is observed in an experimental regime where the effective-light-cone picture does not apply.
Abstract: The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.

779 citations

Journal ArticleDOI
23 Jun 2016-Nature
TL;DR: This work reports the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer and explores the Schwinger mechanism of particle–antiparticle generation by monitoring the mass production and the vacuum persistence amplitude.
Abstract: A digital quantum simulation of a lattice gauge theory is performed on a quantum computer that consists of a few trapped-ion qubits; the model simulated is the Schwinger mechanism, which describes the creation of electron–positron pairs from vacuum. Quantum simulations promise to provide solutions to problems where classical computational methods fail. An example of a challenging computational problem is the real-time dynamics in gauge theories — field theories paramount to modern particle physics. This paper presents a digital quantum simulation of a lattice gauge theory on a quantum computer consisting of a few qubits comprising trapped calcium controlled by electromagnetic fields. The specific model that the authors simulate is the Schwinger mechanism, which describes the creation of electron–positron pairs from vacuum. As an early example of a particle-physics theory simulated with an atomic physics experiment, this could potentially open the door to simulating more complicated and otherwise computationally intractable models. Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons1,2. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator3,4, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented5,6,7. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model8,9) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism10,11, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron–positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields12 in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture13. We explore the Schwinger mechanism of particle–antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

689 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the state of the field of trapped ion quantum computing and discuss what is being done, and what may be required, to increase the scale of trapped ions quantum computers while mitigating decoherence and control errors.
Abstract: Trapped ions are among the most promising systems for practical quantum computing (QC). The basic requirements for universal QC have all been demonstrated with ions, and quantum algorithms using few-ion-qubit systems have been implemented. We review the state of the field, covering the basics of how trapped ions are used for QC and their strengths and limitations as qubits. In addition, we discuss what is being done, and what may be required, to increase the scale of trapped ion quantum computers while mitigating decoherence and control errors. Finally, we explore the outlook for trapped-ion QC. In particular, we discuss near-term applications, considerations impacting the design of future systems of trapped ions, and experiments and demonstrations that may further inform these considerations.

650 citations

Journal ArticleDOI
TL;DR: In this article, a trapped-ion implementation of one such hybrid algorithm is used to solve a quantum chemistry problem, which is a promising approach for near-term practical applications of quantum computers.
Abstract: Quantum-classical hybrid algorithms are a promising approach for near-term practical applications of quantum computers. A new experiment demonstrates how a trapped-ion implementation of one such algorithm solves a quantum chemistry problem.

445 citations

Journal ArticleDOI
19 Oct 2018
TL;DR: The application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz is studied and an analytical method to compute the energy gradient is proposed that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients.
Abstract: The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectation values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this paper, we study the application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We introduce new strategies to reduce the circuit depth for the implementation of UCC and improve the optimization of the wavefunction based on efficient classical approximations of the cluster amplitudes. Additionally, we propose an analytical method to compute the energy gradient that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients. We illustrate our methodology with numerical simulations for a system of four hydrogen atoms that exhibit strong correlation and show that the circuit depth of VQE using a UCC ansatz can be reduced without introducing significant loss of accuracy in the final wavefunctions and energies.

437 citations

References
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

Journal ArticleDOI
TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Abstract: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing. The first two papers deal with entanglement. The paper by R. Mosseri and P. Ribeiro presents a detailed description of the two-and three-qubit geometry in Hilbert space, dealing with the geometry of fibrations and discrete geometry. The paper by J.-G.Luque et al. is more algebraic and considers invariants of pure k-qubit states and their application to entanglement measurement.

14,205 citations

Proceedings ArticleDOI
Peter W. Shor1
20 Nov 1994
TL;DR: Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given.
Abstract: A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. We thus give the first examples of quantum cryptanalysis. >

6,961 citations

Journal ArticleDOI
TL;DR: A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams, where decoherence is negligible, and the measurement can be carried out with a high efficiency.
Abstract: A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams. Quantum gates involving any pair, triplet, or subset of ions can be realized by coupling the ions through the collective quantized motion. In this system decoherence is negligible, and the measurement (readout of the quantum register) can be carried out with a high efficiency.

3,247 citations

Journal ArticleDOI
A. R. Calderbank1, Peter W. Shor1
TL;DR: The techniques investigated in this paper can be extended so as to reduce the accuracy required for factorization of numbers large enough to be difficult on conventional computers appears to be closer to one part in billions.
Abstract: With the realization that computers that use the interference and superposition principles of quantum mechanics might be able to solve certain problems, including prime factorization, exponentially faster than classical computers @1#, interest has been growing in the feasibility of these quantum computers, and several methods for building quantum gates and quantum computers have been proposed @2,3#. One of the most cogent arguments against the feasibility of quantum computation appears to be the difficulty of eliminating error caused by inaccuracy and decoherence @4#. Whereas the best experimental implementations of quantum gates accomplished so far have less than 90% accuracy @5#, the accuracy required for factorization of numbers large enough to be difficult on conventional computers appears to be closer to one part in billions. We hope that the techniques investigated in this paper can eventually be extended so as to reduce this quantity by several orders of magnitude. In the storage and transmission of digital data, errors can be corrected by using error-correcting codes @6#. In digital computation, errors can be corrected by using redundancy; in fact, it has been shown that fairly unreliable gates could be assembled to form a reliable computer @7#. It has widely been assumed that the quantum no-cloning theorem @8# makes error correction impossible in quantum communication and computation because redundancy cannot be obtained by duplicating quantum bits. This argument was shown to be in error for quantum communication in Ref. @9#, where a code was given that mapped one qubit ~two-state quantum system! into nine qubits so that the original qubit could be recovered perfectly even after arbitrary decoherence of any one of these nine qubits. This gives a quantum code on nine qubits with a rate 1

2,176 citations