scispace - formally typeset
Search or ask a question
Journal Article

A quantum Newton's cradle

18 May 2006-Bulletin of the American Physical Society (American Physical Society)-Vol. 37
TL;DR: In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract: It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Abstract: It is demonstrated that an isolated generic quantum many-body system does relax to a state well described by the standard statistical mechanical prescription The thermalization happens at the level of individual eigenstates, allowing the computation of thermal averages from knowledge of any eigenstate in the microcanonical energy window An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive Recently, meaningful experimental studies1,2 of the problem have become possible, stimulating theoretical interest3,4,5,6,7 In generic isolated systems, non-equilibrium dynamics is expected8,9 to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible10 For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete11 Some recent studies4,5 even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch12 and Srednicki13 A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result

2,598 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Abstract: This Colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems There is particularly a focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian Several aspects of the slow dynamics in driven systems are discussed and the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions is emphasized Recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis is also reviewed and relaxation in integrable systems is discussed Finally key experiments probing quantum dynamics in cold atom systems are overviewed and put into the context of our current theoretical understanding

2,340 citations

Journal ArticleDOI
21 Aug 2015-Science
TL;DR: This experiment experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave.
Abstract: Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.

1,454 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the progress in probing dynamical equilibration and thermalization of closed quantum many-body systems driven out of equilibrium by quenches, ramps and periodic driving.
Abstract: How do closed quantum many-body systems driven out of equilibrium eventually achieve equilibration? And how do these systems thermalize, given that they comprise so many degrees of freedom? Progress in answering these—and related—questions has accelerated in recent years—a trend that can be partially attributed to success with experiments performing quantum simulations using ultracold atoms and trapped ions. Here we provide an overview of this progress, specifically in studies probing dynamical equilibration and thermalization of systems driven out of equilibrium by quenches, ramps and periodic driving. In doing so, we also address topics such as the eigenstate thermalization hypothesis, typicality, transport, many-body localization and universality near phase transitions, as well as future prospects for quantum simulation. Statistical mechanics is adept at describing the equilibria of quantum many-body systems. But drive these systems out of equilibrium, and the physics is far from clear. Recent advances have broken new ground in probing these equilibration processes.

1,100 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Abstract: It is demonstrated that an isolated generic quantum many-body system does relax to a state well described by the standard statistical mechanical prescription The thermalization happens at the level of individual eigenstates, allowing the computation of thermal averages from knowledge of any eigenstate in the microcanonical energy window An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive Recently, meaningful experimental studies1,2 of the problem have become possible, stimulating theoretical interest3,4,5,6,7 In generic isolated systems, non-equilibrium dynamics is expected8,9 to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible10 For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete11 Some recent studies4,5 even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch12 and Srednicki13 A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result

2,598 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Abstract: This Colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems There is particularly a focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian Several aspects of the slow dynamics in driven systems are discussed and the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions is emphasized Recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis is also reviewed and relaxation in integrable systems is discussed Finally key experiments probing quantum dynamics in cold atom systems are overviewed and put into the context of our current theoretical understanding

2,340 citations

Journal ArticleDOI
Elliott H. Lieb1, Werner Liniger1
TL;DR: In this paper, the ground-state energy as a function of γ was derived for all γ, except γ = 0, and it was shown that Bogoliubov's perturbation theory is valid when γ is small.
Abstract: A gas of one-dimensional Bose particles interacting via a repulsive delta-function potential has been solved exactly. All the eigenfunctions can be found explicitly and the energies are given by the solutions of a transcendental equation. The problem has one nontrivial coupling constant, γ. When γ is small, Bogoliubov’s perturbation theory is seen to be valid. In this paper, we explicitly calculate the ground-state energy as a function of γ and show that it is analytic for all γ, except γ=0. In Part II, we discuss the excitation spectrum and show that it is most convenient to regard it as a double spectrum—not one as is ordinarily supposed.

2,230 citations

Journal ArticleDOI
TL;DR: The eigenstate thermalization hypothesis (ETH) as discussed by the authors is a natural extension of quantum chaos and random matrix theory (RMT) that allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath.
Abstract: This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the i...

1,536 citations