scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL‐53) Upon Hydration

TL;DR: Analysis of the hydration process by solid-state NMR has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms.
Abstract: Aluminum 1,4-benzenedicarboxylate Al(OH)[O2CC6H4CO2]⋅ [HO2CC6H4CO2H]0.70 or MIL-53 as (Al) has been hydrothermally synthesized by heating a mixture of aluminum nitrate, 1,4-benzenedicarboxylic acid, and water, for three days at 220 °C. Its 3 D framework is built up of infinite trans chains of corner-sharing AlO4(OH)2 octahedra. The chains are interconnected by the 1,4-benzenedicarboxylate groups, creating 1 D rhombic-shaped tunnels. Disordered 1,4-benzenedicarboxylic acid molecules are trapped inside these tunnels. Their evacuation upon heating, between 275 and 420 °C, leads to a nanoporous open-framework (MIL-53 ht (Al) or Al(OH)[O2CC6H4CO2]) with empty pores of diameter 8.5 A. This solid exhibits a Langmuir surface area of 1590(1) m2 g−1 together with a remarkable thermal stability, since it starts to decompose only at 500 °C. At room temperature, the solid reversibly absorbs water in its tunnels, causing a very large breathing effect and shrinkage of the pores. Analysis of the hydration process by solid-state NMR (1H, 13C, 27Al) has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms. The hydrogen bonds between water and the oxygen atoms of the framework are responsible for the contraction of the rhombic channels. The structures of the three forms have been determined by means of powder X-ray diffraction analysis. Crystal data for MIL-53 as (Al) are as follows: orthorhombic system, Pnma (no. 62), a = 17.129(2), b = 6.628(1), c = 12.182(1) A; for MIL-53 ht (Al), orthorhombic system, Imma (no. 74), a = 6.608(1), b = 16.675(3), c = 12.813(2) A; for MIL-53 lt (Al), monoclinic system, Cc (no. 9), a = 19.513(2), b = 7.612(1), c = 6.576(1) A, β = 104.24(1)°.
Citations
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Abstract: This critical review will be of interest to the experts in porous solids (including catalysis), but also solid state chemists and physicists. It presents the state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their ‘design’, aiming at reaching very large pores. Their dynamic properties and the possibility of predicting their structure are described. The large tunability of the pore size leads to unprecedented properties and applications. They concern adsorption of species, storage and delivery and the physical properties of the dense phases. (323 references)

5,187 citations

Journal ArticleDOI
TL;DR: The Zr-MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 degrees C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
Abstract: Porous crystals are strategic materials with industrial applications within petrochemistry, catalysis, gas storage, and selective separation Their unique properties are based on the molecular-scale porous character However, a principal limitation of zeolites and similar oxide-based materials is the relatively small size of the pores, typically in the range of medium-sized molecules, limiting their use in pharmaceutical and fine chemical applications Metal organic frameworks (MOFs) provided a breakthrough in this respect New MOFs appear at a high and an increasing pace, but the appearances of new, stable inorganic building bricks are rare Here we present a new zirconium-based inorganic building brick that allows the synthesis of very high surface area MOFs with unprecedented stability The high stability is based on the combination of strong Zr−O bonds and the ability of the inner Zr6-cluster to rearrange reversibly upon removal or addition of μ3-OH groups, without any changes in the connecting carbox

4,958 citations