scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Real-Time QRS Detection Algorithm

01 Mar 1985-IEEE Transactions on Biomedical Engineering (IEEE Trans Biomed Eng)-Vol. 32, Iss: 3, pp 230-236
TL;DR: A real-time algorithm that reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width of ECG signals and automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate.
Abstract: We have developed a real-time algorithm for detection of the QRS complexes of ECG signals. It reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width. A special digital bandpass filter reduces false detections caused by the various types of interference present in ECG signals. This filtering permits use of low thresholds, thereby increasing detection sensitivity. The algorithm automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate. For the standard 24 h MIT/BIH arrhythmia database, this algorithm correctly detects 99.3 percent of the QRS complexes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work proposes a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA), and proposes a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving.
Abstract: This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems.

50 citations


Cites methods from "A Real-Time QRS Detection Algorithm..."

  • ...An automatic QRS detection algorithm (Pan and Tompkins 1985) was applied in order to extract the interval between two successive R-waves (tR−R)....

    [...]

Journal ArticleDOI
TL;DR: The proposed HIoTSP framework provides the functionalities for data acquisition from wearable sensors, contextual activity recognition, automatic selection of services and applications, user interface, and value-added services such as alert generation, recommendations, and visualization.

50 citations

Journal ArticleDOI
TL;DR: A novel, two-phased multimethod approach for heartbeat and respiration detection from an optical interferometric signal, which fuses all the detections of vital signs.
Abstract: In this paper, a multimethod approach for heartbeat and respiration detection from an optical interferometric signal is proposed. Optical interferometer is a sensitive device that detects physical changes of optical-fiber length due to external perturbations. When in direct or indirect contact with human body (e.g., hidden in a bed mattress), mechanical and acoustic activity of cardiac muscle and respiration reflect in the interferometric signal, enabling entirely unobtrusive monitoring of heartbeat and respiration. A novel, two-phased multimethod approach was developed for this purpose. The first phase selects best performing combinations of detection methods on a training set of signals. The second phase applies the selected methods to test set of signals and fuses all the detections of vital signs. The test set consisted of 14 subjects cycling an ergometer until reaching their submaximal heart rate. The following resting periods were analyzed showing high efficiency (98.18 ± 1.40% sensitivity and 97.04 ± 4.95% precision) and accuracy (mean absolute error of beat-to-beat intervals 22±9 ms) for heartbeat detection, and acceptable efficiency (90.06 ± 7.49% sensitivity and 94.21 ± 3.70% precision) and accuracy (mean absolute error of intervals between respiration events 0.33 ± 0.14 s) for respiration detection.

50 citations

Proceedings ArticleDOI
Patrick Schwab1, Gaetano Scebba1, Jia Zhang1, Marco Delai1, Walter Karlen1 
TL;DR: In this article, an ensemble of recurrent neural networks (RNNs) was used to classify the normal sinus rhythms, atrial fibrillation, other types of arrhythmia and signals that are too noisy to interpret.
Abstract: With tens of thousands of electrocardiogram (ECG) records processed by mobile cardiac event recorders every day, heart rhythm classification algorithms are an important tool for the continuous monitoring of patients at risk. We utilise an annotated dataset of 12,186 single-lead ECG recordings to build a diverse ensemble of recurrent neural networks (RNNs) that is able to distinguish between normal sinus rhythms, atrial fibrillation, other types of arrhythmia and signals that are too noisy to interpret. In order to ease learning over the temporal dimension, we introduce a novel task formulation that harnesses the natural segmentation of ECG signals into heartbeats to drastically reduce the number of time steps per sequence. Additionally, we extend our RNNs with an attention mechanism that enables us to reason about which heartbeats our RNNs focus on to make their decisions. Through the use of attention, our model maintains a high degree of interpretability, while also achieving state-of-the-art classification performance with an average F1 score of 0.79 on an unseen test set (n=3,658).

50 citations

Journal ArticleDOI
TL;DR: The results foster the feasibility of this methodology to be applied in a clinical setting for the monitoring of the ANS response of children with ASD during treatment.

50 citations

References
More filters
Journal ArticleDOI
TL;DR: This review asserts that most one-channel QRS detectors described in the literature can be considered as having the same basic structure and a discussion of some of the current detection schemes is presented.
Abstract: The QRS detection algorithm is an essential part of any computer-based system for the analysis of ambulatory ECG recordings. This review asserts that most one-channel QRS detectors described in the literature can be considered as having the same basic structure. A discussion of some of the current detection schemes is presented with regard to this structure. Some additional features of QRS detectors are mentioned. The evaluation of performance and the problem of multichannel detection, which is now gaining importance, are also briefly treated.

254 citations

Journal ArticleDOI
TL;DR: The problem of detecting the QRS complex in the presence of noise was analysed and an optimised threshold criterion based on FP/FN was developed.
Abstract: The problem of detecting the QRS complex in the presence of noise was analysed. Most QRS detectors contain a filter to improve the signal-to-noise ratio and compare the signal with a threshold. In an earlier paper we identified an optimal filter. Various techniques to generate threshold and detector designs were studied. Automatic gain-control circuits with a fixed threshold have a very slow response to different rhythms. Automatic threshold circuits based on simple peak-detection schemes have a fast response, but are very sensitive to sudden variations in QRS amplitudes and noise transients. None of the methods described to date present any optimisation criteria for detecting the signal (QRS complex) in the presence of noise. The probabilities of FPs (false positives) and FNs (false negatives) were investigated and an optimised threshold criterion based on FP/FN was developed. Presently, data are being collected to compare various techniques from their ROC (receiver operating characteristics).

151 citations

Journal ArticleDOI
TL;DR: An automated Holtes scanning system based on two microcomputers that detects QRS complexes and measures the QRS durations using computations of first and second derivatives, and can process Holter tapes at 60 times real time and produce printed summaries and 24 h trend plots.
Abstract: We have developed an automated Holtes scanning system based on two microcomputers. One is a preprocessor that detects QRS complexes and measures the QRS durations using computations of first and second derivatives. Thismicrocomputer interfaces to a secondmicro-computer that does arrhythmia analysis, logging, and reporting using R-R intervals and QRS durations. This system can process Holter tapes at 60 times real time and produce printed summaries and 24 h trend plots of several variables including heart rate and PVC count.

127 citations


"A Real-Time QRS Detection Algorithm..." refers methods in this paper

  • ...The slope of the R wave is a popular signal feature used to locate the QRS complex in many QRS detectors [5]....

    [...]

Journal ArticleDOI
P. A. Lynn1
TL;DR: The possibilities for extending the class of lowpass recursive digital filters to include high pass, bandpass, and bandstop filters are described, and experience with a PDP 11 computer has shown that these filters may be programmed simply using machine code, and that online operation at sampling rates up to about 8 kHz is possible.
Abstract: After reviewing the design of a class of lowpass recursive digital filters having integer multiplier and linear phase characteristics, the possibilities for extending the class to include high pass, bandpass, and bandstop (‘notch’) filters are described. Experience with a PDP 11 computer has shown that these filters may be programmed simply using machine code, and that online operation at sampling rates up to about 8 kHz is possible. The practical application of such filters is illustrated by using a notch desgin to remove mains-frequency interference from an e.c.g. waveform.

104 citations

Journal ArticleDOI
TL;DR: In this paper a new robust single lead QRS-detection algorithm is presented, allowing real-time applications and results are presented.

101 citations