scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Real-Time QRS Detection Algorithm

01 Mar 1985-IEEE Transactions on Biomedical Engineering (IEEE Trans Biomed Eng)-Vol. 32, Iss: 3, pp 230-236
TL;DR: A real-time algorithm that reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width of ECG signals and automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate.
Abstract: We have developed a real-time algorithm for detection of the QRS complexes of ECG signals. It reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width. A special digital bandpass filter reduces false detections caused by the various types of interference present in ECG signals. This filtering permits use of low thresholds, thereby increasing detection sensitivity. The algorithm automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate. For the standard 24 h MIT/BIH arrhythmia database, this algorithm correctly detects 99.3 percent of the QRS complexes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a second-order IIR adaptive notch filter (ANF) algorithm based on least-mean p-power (LMP) error criterion is investigated, which is used to cancel 60-Hz interference in the recording of electrocardiograms (ECG).
Abstract: A new second-order IIR adaptive notch filter (ANF) algorithm based on least-mean-p-power (LMP) error criterion is investigated. When the ANF is used to cancel 60-Hz interference in the recording of electrocardiograms (ECG), the performance of this adaptive algorithm with p=1 is better than that of the conventional least-mean-square (LMS, p=2) algorithm. Furthermore, when the ANF is applied to estimate the frequency of sinusoid embedded in white noise, this algorithm with p=3 has better statistical accuracy than the LMS algorithm. Simulation results are presented to demonstrate the effectiveness of the proposed ANF algorithm. >

80 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel key generation approach that extracts keys from real-valued ECG features with high reliability and entropy in mind, and demonstrates IOMBA on ECG, which should be useful for other biometrics as well.
Abstract: Traditional passwords are inadequate as cryptographic keys, as they are easy to forge and are vulnerable to guessing. Human biometrics have been proposed as a promising alternative due to their intrinsic nature. Electrocardiogram (ECG) is an emerging biometric that is extremely difficult to forge and circumvent, but has not yet been heavily investigated for cryptographic key generation. ECG has challenges with respect to immunity to noise, abnormalities, etc. In this paper, we propose a novel key generation approach that extracts keys from real-valued ECG features with high reliability and entropy in mind. Our technique, called interval optimized mapping bit allocation (IOMBA), is applied to normal and abnormal ECG signals under multiple session conditions. We also investigate IOMBA in the context of different feature extraction methods, such as wavelet, discrete cosine transform, etc., to find the best method for feature extraction. Experiments of IOMBA show that 217-, 38-, and 100-bit keys with 99.9%, 97.4%, and 95% average reliability and high entropy can be extracted from normal, abnormal, and multiple session ECG signals, respectively. By allowing more errors or lowering entropy, key lengths can be further increased by tunable parameters of IOMBA, which can be useful in other applications. While IOMBA is demonstrated on ECG, it should be useful for other biometrics as well.

80 citations

Journal ArticleDOI
TL;DR: Two feature extraction approaches to classify five types of heartbeats: normal, premature ventricular contraction, atrial premature contraction, left bundle branch block and right bundle branches block are proposed.

79 citations

Journal ArticleDOI
TL;DR: Present findings indicate high validity of the Oura ring in the assessment of nocturnal HR and HRV in healthy adults and show the utility of this miniaturised device as a lifestyle management tool in long-term settings.
Abstract: Objective: To validate the accuracy of the Oura ring in the quantification of resting heart rate (HR) and heart rate variability (HRV). Background: Wearable devices have become comfortable, lightweight, and technologically advanced for assessing health behavior. As an example, the novel Oura ring integrates daily physical activity and nocturnal cardiovascular measurements. Ring users can follow their autonomic nervous system responses to their daily behavior based on nightly changes in HR and HRV, and adjust their behavior accordingly after self-reflection. As wearable photoplethysmogram (PPG) can be disrupted by several confounding influences, it is crucial to demonstrate the accuracy of ring measurements . Approach: Nocturnal HR and HRV were assessed in 49 adults with simultaneous measurements from the Oura ring and the gold standard ECG measurement. Female and male participants with a wide age range (15-72 years) and physical activity status were included. Regression analysis between ECG and the ring outcomes was performed. Main results: Very high agreement between the ring and ECG was observed for nightly average HR and HRV (r2 = 0.996 and 0.980, respectively) with a mean bias of -0.63 bpm and -1.2 ms. High agreement was also observed across 5-min segments within individual nights in (r2 = 0.869±0.098 and 0.765±0.178 in HR and HRV, respectively). Significance: Present findings indicate high validity of the Oura ring in the assessment of nocturnal HR and HRV in healthy adults. The results show the utility of this miniaturised device as a lifestyle management tool in long-term settings. High quality PPG signal results prompt future studies utilizing ring PPG towards clinically relevant health outcomes.

79 citations


Cites methods from "A Real-Time QRS Detection Algorithm..."

  • ...…ECG signal was detrended using smoothness prior approach; secondly, preliminary timing of R peaks was determined using Pan–Tompkins R-peak detector (Pan and Tompkins 1985), and thirdly, final timing from the local maximum of the original ECG in the proximity of the preliminary R peak was…...

    [...]

Journal ArticleDOI
TL;DR: This paper presents the UofT ECG database and offers a comprehensive analysis of the underlying interindividual variability under a number of conditions, such as body posture, physical activity, and time lapse and a method based on template fusion is proposed to address these shortcomings.
Abstract: This paper addresses the challenges of evaluating electrocardiogram (ECG) biometric recognition systems. While this new biometric modality has attracted significant interest, a majority of the prior art has approached it from the perspective of a typical biometric modality and has neglected the physiological factors that directly affect the behavior of the respective systems. In an effort to bring to the table the idiosyncratic properties of the ECG biometric modality, this paper presents the UofT ECG database and offers a comprehensive analysis of the underlying interindividual variability under a number of conditions, such as body posture, physical activity, and time lapse. The performance of various methodologies is reported under the above-mentioned conditions and a method based on template fusion is proposed to address these shortcomings.

79 citations


Cites methods from "A Real-Time QRS Detection Algorithm..."

  • ...The QRS detection algorithm described in [60] was employed to segment and align the heartbeats....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This review asserts that most one-channel QRS detectors described in the literature can be considered as having the same basic structure and a discussion of some of the current detection schemes is presented.
Abstract: The QRS detection algorithm is an essential part of any computer-based system for the analysis of ambulatory ECG recordings. This review asserts that most one-channel QRS detectors described in the literature can be considered as having the same basic structure. A discussion of some of the current detection schemes is presented with regard to this structure. Some additional features of QRS detectors are mentioned. The evaluation of performance and the problem of multichannel detection, which is now gaining importance, are also briefly treated.

254 citations

Journal ArticleDOI
TL;DR: The problem of detecting the QRS complex in the presence of noise was analysed and an optimised threshold criterion based on FP/FN was developed.
Abstract: The problem of detecting the QRS complex in the presence of noise was analysed. Most QRS detectors contain a filter to improve the signal-to-noise ratio and compare the signal with a threshold. In an earlier paper we identified an optimal filter. Various techniques to generate threshold and detector designs were studied. Automatic gain-control circuits with a fixed threshold have a very slow response to different rhythms. Automatic threshold circuits based on simple peak-detection schemes have a fast response, but are very sensitive to sudden variations in QRS amplitudes and noise transients. None of the methods described to date present any optimisation criteria for detecting the signal (QRS complex) in the presence of noise. The probabilities of FPs (false positives) and FNs (false negatives) were investigated and an optimised threshold criterion based on FP/FN was developed. Presently, data are being collected to compare various techniques from their ROC (receiver operating characteristics).

151 citations

Journal ArticleDOI
TL;DR: An automated Holtes scanning system based on two microcomputers that detects QRS complexes and measures the QRS durations using computations of first and second derivatives, and can process Holter tapes at 60 times real time and produce printed summaries and 24 h trend plots.
Abstract: We have developed an automated Holtes scanning system based on two microcomputers. One is a preprocessor that detects QRS complexes and measures the QRS durations using computations of first and second derivatives. Thismicrocomputer interfaces to a secondmicro-computer that does arrhythmia analysis, logging, and reporting using R-R intervals and QRS durations. This system can process Holter tapes at 60 times real time and produce printed summaries and 24 h trend plots of several variables including heart rate and PVC count.

127 citations


"A Real-Time QRS Detection Algorithm..." refers methods in this paper

  • ...The slope of the R wave is a popular signal feature used to locate the QRS complex in many QRS detectors [5]....

    [...]

Journal ArticleDOI
P. A. Lynn1
TL;DR: The possibilities for extending the class of lowpass recursive digital filters to include high pass, bandpass, and bandstop filters are described, and experience with a PDP 11 computer has shown that these filters may be programmed simply using machine code, and that online operation at sampling rates up to about 8 kHz is possible.
Abstract: After reviewing the design of a class of lowpass recursive digital filters having integer multiplier and linear phase characteristics, the possibilities for extending the class to include high pass, bandpass, and bandstop (‘notch’) filters are described. Experience with a PDP 11 computer has shown that these filters may be programmed simply using machine code, and that online operation at sampling rates up to about 8 kHz is possible. The practical application of such filters is illustrated by using a notch desgin to remove mains-frequency interference from an e.c.g. waveform.

104 citations

Journal ArticleDOI
TL;DR: In this paper a new robust single lead QRS-detection algorithm is presented, allowing real-time applications and results are presented.

101 citations