scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase.

26 Oct 1989-Nature (Nature Publishing Group)-Vol. 341, Iss: 6244, pp 758-760
TL;DR: The FKBP and cyclophilin appear to be members of an emerging class of novel proteins that regulate T cell activation and other metabolic processes, perhaps by the recognition (and possibly the isomerization) of proline-containing epitopes in target proteins.
Abstract: THE structurally novel macrolide FK506 (refs 1,2) has recently been demonstrated to have potent immunosuppressive activity3–7 at concentrations several hundredfold lower than cyclosporin A (CsA). Cyclosporin A, a cyclic peptide, has found widespread clinical use in the prevention of graft rejection following bone marrow and organ transplantation8. The mechanisms of immunosuppression mediated by FK506 and CsA appear to be remarkably similar, suggesting that these unrelated structures act on a common receptor or on similar molecular targets, perhaps the CsA receptor, cyclophilin9–11, which has recently been shown by Fischer etal.12 and Takahashi etal.13 to have cis–trans peptidyl-prolyl isomerase activity. We have prepared an FK506 affinity matrix and purified a binding protein for FK506 from bovine thymus and from human spleen. This FK506-binding protein (FKBP) has a relative molecular mass (Mr) of ∼14,000(14K), a pi of 8.8–8.9, and does not cross-react with antisera against cyclophilin. The first 40 N-terminal residues of the bovine and 16 residues of the human FKBP were determined; the 16-residue fragments are identical to each other and unrelated to any known sequences. This protein catalyses the cis–trans isomerization of the proline amide in a tetrapeptide substrate and FK506 inhibits the action of this new isomerase. The FKBP and cyclophilin appear to be members of an emerging class of novel proteins that regulate T cell activation and other metabolic processes, perhaps by the recognition (and possibly the isomerization) of proline-containing epitopes in target proteins.
Citations
More filters
Journal ArticleDOI
23 Aug 1991-Cell
TL;DR: The results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and Fk506 by forming drug-dependent complexes with and altering the activity of calcineURin-calmodulin.

3,968 citations

Journal ArticleDOI
TL;DR: Recent findings that indicate CsA and FK506 operate as prodrugs are reviewed: they bind endogenous intracellular receptors, the immunophilins, and the resulting complex targets the protein phosphatase, calcineurin, to exert the immunosuppressive effect.

2,032 citations

Journal ArticleDOI
23 Aug 1991-Science
TL;DR: Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex that may mediate nuclear entry of signals required for progression through the cell cycle.
Abstract: FK506 and rapamycin are related immunosuppressive compounds that block helper T cell activation by interfering with signal transduction. In vitro, both drugs bind and inhibit the FK506-binding protein (FKBP) proline rotamase. Saccharomyces cerevisiae cells treated with rapamycin irreversibly arrested in the G1 phase of the cell cycle. An FKBP-rapamycin complex is concluded to be the toxic agent because (i) strains that lack FKBP proline rotamase, encoded by FPR1, were viable and fully resistant to rapamycin and (ii) FK506 antagonized rapamycin toxicity in vivo. Mutations that conferred rapamycin resistance altered conserved residues in FKBP that are critical for drug binding. Two genes other than FPR1, named TOR1 and TOR2, that participate in rapamycin toxicity were identified. Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex. Such a complex may mediate nuclear entry of signals required for progression through the cell cycle.

1,887 citations

Journal ArticleDOI
15 Jul 1994-Cell
TL;DR: It is proposed that RAFT1 is the direct target of FKBP12-rapamycin and a mammalian homolog of the TOR proteins, which were originally identified by mutations that confer rapamycin resistance in yeast.

1,472 citations


Cites background from "A receptor for the immunosuppressan..."

  • ...Cyclosporin A (a cyclical undecapeptide) binds to cyclophilin A, whereas FK506 and rapamycin (two related macrolide antibiotics) bind to a distinct receptor protein, FKBP12 (Handschumacher et al., 1984; Harding et al., 1989; Siekierka et al., 1989)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Small amounts of myoglobin, beta-lactoglobulin, and other proteins and peptides can be spotted or electroblotted onto polyvinylidene difluoride membranes, stained with Coomassie Blue, and sequenced directly, suggesting that PVDF membranes are superior supports for sequence analysis of picomole quantities of proteins purified by gel electrophoresis.

4,869 citations

Journal ArticleDOI
02 Nov 1984-Science
TL;DR: Isolation of cyclophilin from the cytosol of thymocytes suggests that the immunosuppressive activity of cyclosporin A is mediated by an intracellular mechanism, not by a membrane-associated mechanism.
Abstract: Cyclophilin, a specific cytosolic binding protein responsible for the concentration of the immunosuppressant cyclosporin A by lymphoid cells, was purified to homogeneity from bovine thymocytes. Cation-exchange high-performance liquid chromatography resolved a major and minor cyclophilin species that bind cyclosporin A with a dissociation constant of about 2 X 10(-7) moles per liter and specific activities of 77 and 67 micrograms per milligram of protein, respectively. Both cyclophilin species have an apparent molecular weight of 15,000, an isoelectric point of 9.6, and nearly identical amino acid compositions. A portion of the NH2-terminal amino acid sequence of the major species was determined. The cyclosporin A-binding activity of cyclophilin is sulfhydryl dependent, unstable at 56 degrees C and at pH 4 or 9.5, and sensitive to trypsin but not to chymotrypsin digestion. Cyclophilin specifically binds a series of cyclosporin analogs in proportion to their activity in a mixed lymphocyte reaction. Isolation of cyclophilin from the cytosol of thymocytes suggests that the immunosuppressive activity of cyclosporin A is mediated by an intracellular mechanism, not by a membrane-associated mechanism.

1,587 citations

Journal ArticleDOI
02 Feb 1989-Nature
TL;DR: The results indicate that this enzyme is probably identical to cyclophilin, a recently discovered mammalian protein which binds tightly to cyclosporin A (CsA), which is thought to be linked to the immunosuppressive action of CsA.
Abstract: The enzyme peptidyl-prolyl cis-trans isomerase (PPIase) was recently discovered in mammalian tissues and purified from porcine kidney. It catalyses the slow cis-trans isomerization of proline peptide (Xaa-Pro) bonds in oligopeptides and accelerates slow, rate-limiting steps in the folding of several proteins. Here, we report the N-terminal sequence of PPIase together with further chemical and enzymatic properties. The results indicate that this enzyme is probably identical to cyclophilin, a recently discovered mammalian protein which binds tightly to cyclosporin A (CsA). Cyclophilin is thought to be linked to the immunosuppressive action of CsA. The first 38 amino-acid residues of porcine PPIase and of bovine cyclophilin are identical and the two proteins both have a relative molecular mass of about 17,000 (ref. 7). The catalysis of prolyl isomerization in oligopeptides and of protein folding by PPIase are strongly inhibited in the presence of low levels of CsA. The activities of both PPIase and cyclophilin depend on a single sulphydryl group. At present it is unknown whether the inhibition of prolyl isomerase activity is related with the immunosuppressive action of CsA.

1,310 citations

Journal ArticleDOI
TL;DR: FFK-506, a novel immunosuppressant, has been isolated from the fermentation broth of Streptomyces tsukubaenis No. 9993 as colorless prism and the molecular formula was determined as C44H69NO12.H2O.
Abstract: FK-506, a novel immunosuppressant, has been isolated from the fermentation broth of Streptomyces tsukubaenis No. 9993 as colorless prism and the molecular formula was determined as C44H69NO12.H2O. The compound suppressed immune responses in vitro and in vivo with mice. This immunosuppressive effect was more potent than that of ciclosporin.

1,180 citations

Journal ArticleDOI
02 Feb 1989-Nature
TL;DR: It is proposed that the peptidyl-prolyl cis-trans isomerizing activity of PPIase may be involved in events, such as those occurring early in T-cell activation, that are suppressed by cyclosporin A.
Abstract: Peptidyl-prolyl cis-trans isomerase (PPIase) catalyses the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and has been shown to accelerate the refolding of several proteins in vitro. Its activity has been detected in yeast, insects and Escherichia coli as well as in mammals, and it is though to be essential for protein folding during protein synthesis in the cell. We purified PPIase from pig kidney and found that its amino-acid sequence is identical to that reported for bovine cyclophilin, a protein known to bind the immunosuppressive drug, cyclosporin A (ref. 5). To investigate the functional relationship between PPIase and cyclophilin we examined the effect of cyclosporin A on PPIase activity and found that it was inhibitory. Thus we propose that the peptidyl-prolyl cis-trans isomerizing activity of PPIase may be involved in events, such as those occurring early in T-cell activation, that are suppressed by cyclosporin A.

1,018 citations