scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds

TL;DR: It is reported that NO.-mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O.-2), apparently leading to formation of peroxynitrite (ONOO−), and not by NO.
Abstract: Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.
Citations
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal Article
TL;DR: The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992, stimulated the development of ionotropic glutamate receptors in the brain.
Abstract: The ionotropic glutamate receptors are ligand-gated ion channels that mediate the vast majority of excitatory neurotransmission in the brain. The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992 ([Hollmann and Heinemann, 1994][1]), stimulated this

4,112 citations

Journal ArticleDOI
17 Jun 1994-Science
TL;DR: In this article, the authors found that mutations of human Cu,Zn superoxide dismutase (SOD) contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS).
Abstract: Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.

3,958 citations

Journal ArticleDOI
29 Oct 1993-Science
TL;DR: Two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain.
Abstract: There is an increasing amount of experimental evidence that oxidative stress is a causal, or at least an ancillary, factor in the neuropathology of several adult neurodegenerative disorders, as well as in stroke, trauma, and seizures. At the same time, excessive or persistent activation of glutamate-gated ion channels may cause neuronal degeneration in these same conditions. Glutamate and related acidic amino acids are thought to be the major excitatory neurotransmitters in brain and may be utilized by 40 percent of the synapses. Thus, two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain. The broad distribution in brain of the processes regulating oxidative stress and mediating glutamatergic neurotransmission may explain the wide range of disorders in which both have been implicated. Yet differential expression of components of the processes in particular neuronal systems may account for selective neurodegeneration in certain disorders.

3,844 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

References
More filters
Journal ArticleDOI
TL;DR: It is proposed that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO under pathological conditions by preventing the formation of peroxynitrite.
Abstract: Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.

7,027 citations

Journal ArticleDOI
01 Oct 1988-Neuron

4,979 citations

Journal ArticleDOI
25 Oct 1990-Nature
TL;DR: It is demonstrated that NO synthase in the brain to be exclusively associated with discrete neuronal populations, and prominent neural localizations provided the first conclusive evidence for a strong association of NO with neurons.
Abstract: Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons

2,979 citations

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: The integration of this chemistry with current perspectives of NO biology illuminates many aspects of NO biochemistry, including the enzymatic mechanism of synthesis, the mode of transport and targeting in biological systems, the means by which its toxicity is mitigated, and the function-regulating interaction with target proteins.
Abstract: Nitric oxide (NO.), a potentially toxic molecule, has been implicated in a wide range of biological functions. Details of its biochemistry, however, remain poorly understood. The broader chemistry of nitrogen monoxide (NO) involves a redox array of species with distinctive properties and reactivities: NO+ (nitrosonium), NO., and NO- (nitroxyl anion). The integration of this chemistry with current perspectives of NO biology illuminates many aspects of NO biochemistry, including the enzymatic mechanism of synthesis, the mode of transport and targeting in biological systems, the means by which its toxicity is mitigated, and the function-regulating interaction with target proteins.

2,713 citations

Journal ArticleDOI
TL;DR: Peroxynitrite anion was a less effective thiol-oxidizing agent than its anion, with oxidation presumably mediated by the decomposition products, hydroxyl radical and nitrogen dioxide.

2,487 citations