scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Review of Fluid Biomarkers for Alzheimer’s Disease: Moving from CSF to Blood

01 Jul 2017-Neurology and Therapy (Springer Healthcare)-Vol. 6, Iss: 1, pp 15-24
TL;DR: Technical developments have given ultrasensitive measurement techniques that allow measurement of brain-specific proteins such as tau and neurofilament light (NFL) in blood samples, and a recent study showed that plasma NFL has a diagnostic performance comparable to the core AD CSF biomarkers, and predicted future cognitive decline.
Abstract: A set of core cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) includes total tau (T-tau), phosphorylated tau (P-tau) and β-amyloid 42 (Aβ42). These biomarkers reflect some of the key aspects of AD pathophysiology, including neuronal degeneration, tau phosphorylation with tangle formation, and Aβ aggregation with deposition of the peptide into plaques. The core AD CSF biomarkers have been validated clinically in numerous studies, and found to have a very high diagnostic performance to identify AD, both in the dementia and in the mild cognitive impairment stages of the disease. CSF Aβ42 has also been found to show very high concordance with amyloid PET to identify brain amyloid deposition. The synaptic protein neurogranin is a novel candidate CSF biomarker for AD and prodromal AD. High CSF neurogranin predicts future cognitive decline and seems to be more specific for AD than, for example, T-tau. Importantly, technical developments have given ultrasensitive measurement techniques that allow measurement of brain-specific proteins such as tau and neurofilament light (NFL) in blood samples. Both plasma tau and NFL are increased in AD, and a recent study showed that plasma NFL has a diagnostic performance comparable to the core AD CSF biomarkers, and predicted future cognitive decline. Future large longitudinal clinical studies are warranted to determine the potential for plasma tau and NFL to serve as first-in-line screening tools for neurodegeneration in primary care.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The genetics and neuropathology of AD, including AD in Down syndrome (AD-DS), is reviewed and a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis is offered.
Abstract: Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.

180 citations


Cites background from "A Review of Fluid Biomarkers for Al..."

  • ...It is noteworthy, however, that increased NFL is not specific to AD, serving as a biomarker for other causes of neurodegeneration (Blennow, 2017)....

    [...]

Journal ArticleDOI
TL;DR: A summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD is provided, and the current knowledge of α synuclein structure and inferred function is described.
Abstract: The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEe4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.

152 citations


Cites background from "A Review of Fluid Biomarkers for Al..."

  • ...are found primarily in the CSF, and to a lesser extent in blood [47]....

    [...]

Journal ArticleDOI
TL;DR: The evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases is reviewed.
Abstract: The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Given this body of evidence implicating complement in diverse brain diseases, manipulating complement in the brain is an attractive prospect; however, the blood-brain barrier (BBB), critical to protect the brain from potentially harmful agents in the circulation, is also impermeable to current complement-targeting therapeutics, making drug design much more challenging. For example, antibody therapeutics administered systemically are essentially excluded from the brain. Recent protocols have utilized "Trojan horse" techniques to transport therapeutics across the BBB or used osmotic shock or ultrasound to temporarily disrupt the BBB. Most research to date exploring the impact of complement inhibition on CNS diseases has been in animal models, and some of these studies have generated convincing data; for example, in models of MS, NMO, and stroke. There have been a few recent clinical trials of available anti-complement drugs in CNS diseases associated with BBB impairment, for example the use of the anti-C5 monoclonal antibody (mAb) eculizumab in NMO, but for most CNS diseases there have been no human trials of anti-complement therapies. Here we will review the evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases. We will discuss the particular problems of drug access into the CNS and explore ways in which anti-complement therapies might be tailored for CNS disease.

130 citations

Journal ArticleDOI
TL;DR: The current understanding of key pathophysiological mechanisms in AD and their clinical manifestation is outlined and it is highlighted how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.
Abstract: Alzheimer's disease (AD), the most common form of dementia in late life, will become even more prevalent by midcentury, constituting a major global health concern with huge implications for individuals and society. Despite scientific breakthroughs during the past decades that have expanded our knowledge on the cellular and molecular bases of AD, therapies that effectively halt disease progression are still lacking, and focused efforts are needed to address this public health challenge. Because AD is classically recognized as a disease of memory, studies have mainly focused on investigating memory-associated brain defects. However, compelling evidence has indicated that additional brain regions, not classically linked to memory, are also affected in the course of disease. In this review, we outline the current understanding of key pathophysiological mechanisms in AD and their clinical manifestation. We also highlight how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.

117 citations


Cites background from "A Review of Fluid Biomarkers for Al..."

  • ...Relatively accurate diagnosis and timely therapies will likely be achieved when neuropsychological, fluid and imaging biomarkers are used in combination (Viola and Klein, 2015; Dubois et al., 2016; Blennow, 2017)....

    [...]

Journal ArticleDOI
TL;DR: The findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Abstract: To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.

108 citations

References
More filters
Journal ArticleDOI
TL;DR: Both linear regressions and multivariate analyses correlating three global neuropsychological tests with a number of structural and neurochemical measurements performed on a prospective series of patients with Alzheimer's disease and 9 neuropathologically normal subjects reveal very powerful correlations with all three psychological assays.
Abstract: We present here both linear regressions and multivariate analyses correlating three global neuropsychological tests with a number of structural and neurochemical measurements performed on a prospective series of 15 patients with Alzheimer's disease and 9 neuropathologically normal subjects. The statistical data show only weak correlations between psychometric indices and plaques and tangles, but the density of neocortical synapses measured by a new immunocytochemical/densitometric technique reveals very powerful correlations with all three psychological assays. Multivariate analysis by stepwise regression produced a model including midfrontal and inferior parietal synapse density, plus inferior parietal plaque counts with a correlation coefficient of 0.96 for Mattis's Dementia Rating Scale. Plaque density contributed only 26% of that strength.

4,020 citations


"A Review of Fluid Biomarkers for Al..." refers background in this paper

  • ...Synaptic degeneration and loss is one of the best pathoanatomical correlates of cognitive deficits in AD and predicts disease better than Ab plaque load [30, 31]....

    [...]

Journal ArticleDOI
TL;DR: The NINCDS-ADRDA and DSM-IV-TR criteria for Alzheimer's disease (AD) are the prevailing diagnostic standards in research; however, they have now fallen behind the unprecedented growth of scientific knowledge as discussed by the authors.
Abstract: The NINCDS-ADRDA and the DSM-IV-TR criteria for Alzheimer's disease (AD) are the prevailing diagnostic standards in research; however, they have now fallen behind the unprecedented growth of scientific knowledge. Distinctive and reliable biomarkers of AD are now available through structural MRI, molecular neuroimaging with PET, and cerebrospinal fluid analyses. This progress provides the impetus for our proposal of revised diagnostic criteria for AD. Our framework was developed to capture both the earliest stages, before full-blown dementia, as well as the full spectrum of the illness. These new criteria are centred on a clinical core of early and significant episodic memory impairment. They stipulate that there must also be at least one or more abnormal biomarkers among structural neuroimaging with MRI, molecular neuroimaging with PET, and cerebrospinal fluid analysis of amyloid beta or tau proteins. The timeliness of these criteria is highlighted by the many drugs in development that are directed at changing pathogenesis, particularly at the production and clearance of amyloid beta as well as at the hyperphosphorylation state of tau. Validation studies in existing and prospective cohorts are needed to advance these criteria and optimise their sensitivity, specificity, and accuracy.

3,951 citations

Journal ArticleDOI
TL;DR: It is proposed that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease.
Abstract: In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

2,581 citations


"A Review of Fluid Biomarkers for Al..." refers background in this paper

  • ...Since two amyloid biomarkers are included in the updated International Working Group (IWG-2) criteria [22], there is a need to understand if they give complementary information, or if they can be used interchangeably....

    [...]

  • ...A revised and updated version of these criteria was published in 2014, the main difference being that downstream topographical biomarkers (volumetric MRI and FDG-PET), were not included among core diagnostic biomarkers (now restricted to amyloid PET and the CSF biomarkers) but only used for monitoring disease course or stage [22]....

    [...]

Journal ArticleDOI
TL;DR: The loss of neuronal connectivity, indexed by loss of synapses, predicted the degree of cognitive impairment in the patients who underwent biopsy and indicated a degree of structural change in AD brain not likely to be affected by pharmacotherapy.
Abstract: Ultrastructural studies of biopsied cortical tissue from the right frontal lobe of 8 patients with mild to moderate Alzheimer's disease (AD) revealed that the number of synapses in lamina III of Brodmann's area 9 was significantly decreased when compared with the number in age-matched control brains (n = 9; postmortem time, less than 13 hours). Further decline in synaptic number was seen in age-matched autopsied AD specimens. In the AD brains there was significant enlargement of the mean apposition length, which correlated with degree of synapse loss; as synapse density declined, synapse size increased. The enlargement of synapses, coupled with the decrease in synaptic number, allowed the total synaptic contact area per unit volume to remain stable in the patients who underwent biopsy. In autopsied subjects who had AD, there was no further enlargement of mean synaptic contact area. There was a significant correlation between synapse counts and scores on the Mini-Mental State examination in the patients who underwent biopsy. Lower mental status scores were associated with greater loss of synapses. Choline acetyltransferase activity was significantly decreased in the biopsied group and declined further in the autopsied specimens of AD. There was no relationship between choline acetyltransferase activity and scores on the Mini-Mental State examination or synapse number. There is evidence of neural plasticity in the AD neuropil; synaptic contact size increased in patients who had biopsy and possibly compensated for the numerical loss of synapses. But by end stage of the disease, the ability of the cortex to compensate was exceeded and both synapse number and synaptic contact area declined.(ABSTRACT TRUNCATED AT 250 WORDS)

2,076 citations

Journal ArticleDOI
01 Sep 2016-Nature
TL;DR: In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner, accompanied by a slowing of clinical decline measured by Clinical Dementia Rating—Sum of Boxes and Mini Mental State Examination scores.
Abstract: Alzheimer's disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.

1,983 citations


"A Review of Fluid Biomarkers for Al..." refers background in this paper

  • ...Furthermore, the Phase1b aducanumab trial showed a doseand time-dependent reduction in brain amyloid plaques as measured by florbetapir PET, but also a high frequency of amyloid-related imaging abnormalities (ARIA) [19]....

    [...]

  • ...Thus, given that we may soon have effective, but most likely also expensive, drugs that may give side-effects such as ARIA, and that mild cognitive impairment (MCI) is a heterogeneous syndrome caused by many disorders (only around half of cases have AD), there is a large need for biomarker-based diagnostic criteria that allow an accurate diagnosis of AD already during the MCI stage, for review see [20]....

    [...]

Related Papers (5)