scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review of nanometer resolution position sensors: Operation and performance

01 Feb 2013-Sensors and Actuators A-physical (Elsevier)-Vol. 190, pp 106-126
TL;DR: In this paper, the authors define concise performance metrics and provide exact and approximate expressions for error sources including nonlinearity, drift and noise for position sensors with nanometer resolution, including resistive, piezoelectric and piezoresistive strain sensors.
Abstract: Position sensors with nanometer resolution are a key component of many precision imaging and fabrication machines. Since the sensor characteristics can define the linearity, resolution and speed of the machine, the sensor performance is a foremost consideration. The first goal of this article is to define concise performance metrics and to provide exact and approximate expressions for error sources including non-linearity, drift and noise. The second goal is to review current position sensor technologies and to compare their performance. The sensors considered include: resistive, piezoelectric and piezoresistive strain sensors; capacitive sensors; electrothermal sensors; eddy current sensors; linear variable displacement transformers; interferometers; and linear encoders.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The progresses of different modeling and control approaches for piezo-actuated nanopositioning stages are discussed and new opportunities for the extended studies are highlighted.
Abstract: Piezo-actuated stages have become more and more promising in nanopositioning applications due to the excellent advantages of the fast response time, large mechanical force, and extremely fine resolution. Modeling and control are critical to achieve objectives for high-precision motion. However, piezo-actuated stages themselves suffer from the inherent drawbacks produced by the inherent creep and hysteresis nonlinearities and vibration caused by the lightly damped resonant dynamics, which make modeling and control of such systems challenging. To address these challenges, various techniques have been reported in the literature. This paper surveys and discusses the progresses of different modeling and control approaches for piezo-actuated nanopositioning stages and highlights new opportunities for the extended studies.

458 citations

Journal ArticleDOI
TL;DR: The interest in cellulose and its modification as cellulose-based composite has been exponentially increasing during the last three decades as discussed by the authors during which cellulose has been extensively designed for many aspects of the sensor, including gas sensor, humidity sensor, UV sensor, strain sensor as well as capacitive sensor.
Abstract: The interest in cellulose and its modification as cellulose-based composite has been exponentially increasing. During the last three decades, cellulose and cellulose-based composite have been extensively designed for many aspects of the sensor. Due to the sustainability of cellulose and its excellent properties, the use of cellulose and the modification on cellulose-based composite can be versatile in the sensor community. In this review article, fundamental and background of cellulose and modification of cellulose-based composite are presented. Numerous approaches on cellulose and cellulose-based composite for many types of sensors including gas sensor, humidity sensor, UV sensor, strain sensor as well as capacitive sensor were discussed.

228 citations

Journal ArticleDOI
TL;DR: This review is aimed to summarize the recent developments and achievements in stepping piezoelectric actuators with large working stroke, especially, the emphasis is on three main types of stepping pieZoelectrics actuators, i.e., inchworm type, friction-inertia type, and parasitic type.
Abstract: Precision positioning systems with large working stroke (millimeter or more) and micro/nano-scale positioning resolution are widely required in both scientific research and industries. For this kind of applications, piezoelectric materials based actuators show unique advantages and have been widely employed. To overcome the demerit of the limited working stroke for single piezoelectric element, various stepping motion principles have been proposed in the past years, and accordingly, stepping piezoelectric actuators with various structures have been designed and evaluated. This review is aimed to summarize the recent developments and achievements in stepping piezoelectric actuators with large working stroke. Especially, the emphasis is on three main types of stepping piezoelectric actuators, i.e., inchworm type, friction-inertia type, and parasitic type. The motion principles of these three types of piezoelectric actuators and the corresponding developments of various actuators are discussed respectively, followed by pointing out the existing problems in these three types of piezoelectric actuators and proposing some potential research directions in this topic. It is expected that this review is helpful for relevant researchers to understand stepping motion principles as well as piezoelectric actuators, and to successfully select and design stepping piezoelectric actuators for specific applications.

168 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive survey of recent advances in nanorobotic manipulation, including the development of nanomanipulation platforms, tools, changeable toolboxes, sensing units, control strategies, electron beam-induced deposition approaches, automation techniques, and nanomonipulation-enabled applications and discoveries.
Abstract: A scanning electron microscope (SEM) provides real-time imaging with nanometer resolution and a large scanning area, which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples. Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices. This paper presents a comprehensive survey of recent advances in nanorobotic manipulation, including the development of nanomanipulation platforms, tools, changeable toolboxes, sensing units, control strategies, electron beam-induced deposition approaches, automation techniques, and nanomanipulation-enabled applications and discoveries. The limitations of the existing technologies and prospects for new technologies are also discussed.

135 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a self-temperature compensation method for eddy-current sensors (ECSs) to reduce the thermal drift of ECSs by two orders of magnitude.
Abstract: This paper proposes a new method to reduce the thermal drift of eddy-current sensors (ECSs) by two orders of magnitude. Theoretical analysis shows that a well-designed bridge will help to decouple two vectors related to the resistance and inductance variations of the sensing coil of ECSs. Experiments show resistance variation has a considerably larger coefficient with temperature change compared to that of inductance variation. Other than being neglected, resistance variation compensates for the influence of temperature on inductance variation, which is used to derive true displacement information. A prototype ECS with high-resolution of sub-nanometer and ultrahigh thermal stability is manufactured and tested. Results show that the thermal drift of the prototype ECS is approximately 2.6 nm/°C, equivalent to 9.7 ppm/°C of the coil's inductance change. This self-temperature compensation method for ECS is simple, low cost, universal, very effective, and has competitive advantages in most applications.

101 citations

References
More filters
Book
01 Jan 1992
TL;DR: In this paper, the Discrete Kalman Filter (DFL) is used for smoothing and prediction linearization in the Global Positioning System (GPS) and a case study is presented.
Abstract: Probability and Random Variables Mathematical Description of Random Signals Response of Linear Systems to Random Inputs Wiener Filtering The Discrete Kalman Filter Applications and Additional Topics on Discrete Kalman Filtering The Continuous Kalman Filter Discrete Smoothing and Prediction Linearization and Additional Topics on Applied Kalman Filtering The Global Positioning System: A Case Study.

2,777 citations

Journal ArticleDOI
Charles S. Smith1
TL;DR: In this article, the complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients.
Abstract: Uniaxial tension causes a change of resistivity in silicon and germanium of both $n$ and $p$ types. The complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients. One of the shear coefficients for each of the materials is exceptionally large and cannot be explained in terms of previously known mechanisms. A possible microscopic mechanism proposed by C. Herring which could account for one large shear constant is discussed. This so called electron transfer effect arises in the structure of the energy bands of these semiconductors, and piezoresistance may therefore give important direct experimental information about this structure.

1,779 citations

Book
01 Feb 1998
TL;DR: In this paper, the authors present an overview of Micromachining Techniques, Mechanical Transducers, Optical Transducers and Ionizing Radiation Transducers for Microfluidic Devices.
Abstract: 1 Introduction and Overview2 Micromachining Techniques3 Mechanical Transducers4 Optical Transducers5 Ionizing Radiation Transducers6 Thermal Transducers7 Magnetic & Electromagnetic Transducers8 Chemical & Biological Transducers9 Microfluidic Devices

1,212 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.
Abstract: Nanotechnology is the science of understanding matter and the control of matter at dimensions of 100 nm or less. Encompassing nanoscale science, engineering, and technology, nanotechnology involves imaging, measuring, modeling, and manipulation of matter at this level of precision. An important aspect of research in nanotechnology involves precision control and manipulation of devices and materials at a nanoscale, i.e., nanopositioning. Nanopositioners are precision mechatronic systems designed to move objects over a small range with a resolution down to a fraction of an atomic diameter. The desired attributes of a nanopositioner are extremely high resolution, accuracy, stability, and fast response. The key to successful nanopositioning is accurate position sensing and feedback control of the motion. This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.

1,027 citations


"A review of nanometer resolution po..." refers background in this paper

  • ...The most commonly used sensors in nanopositioning sysems [8] are the capacitive and eddy-current sensors discussed n Sections 3....

    [...]

Journal ArticleDOI
03 Apr 2009
TL;DR: This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of Piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
Abstract: Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.

789 citations