scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review of recent developments in membrane separators for rechargeable lithium-ion batteries

12 Nov 2014-Energy and Environmental Science (The Royal Society of Chemistry)-Vol. 7, Iss: 12, pp 3857-3886
TL;DR: In this article, the recent developments and the characteristics of membrane separators for rechargeable lithium-ion batteries are reviewed and the outlook and future directions in this research field are also given.
Abstract: In this paper, the recent developments and the characteristics of membrane separators for lithium-ion batteries are reviewed. In recent years, there have been intensive efforts to develop advanced battery separators for rechargeable lithium-ion batteries for different applications such as portable electronics, electric vehicles, and energy storage for power grids. The separator is a critical component of lithium-ion batteries since it provides a physical barrier between the positive and negative electrodes in order to prevent electrical short circuits. The separator also serves as the electrolyte reservoir for the transport of ions during the charging and discharging cycles of a battery. The performance of lithium-ion batteries is greatly affected by the materials and structure of the separators. This paper introduces the requirements of battery separators and the structure and properties of five important types of membrane separators which are microporous membranes, modified microporous membranes, non-woven mats, composite membranes and electrolyte membranes. Each separator type has inherent advantages and disadvantages which influence the performance of lithium-ion batteries. The structures, characteristics, manufacturing, modification, and performance of separators are described in this review paper. The outlook and future directions in this research field are also given.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems and discussed the prospects and future challenges in both scalable manufacturing and more energy storage-related applications.
Abstract: Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed.

292 citations

Journal ArticleDOI
TL;DR: By regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured and allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures.
Abstract: Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

291 citations

Journal ArticleDOI
TL;DR: A thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability and Coulombic efficiency of the Li metal anodes.
Abstract: Li metal anodes have attracted considerable research interest due to their low redox potential (−3.04 V vs standard hydrogen electrode) and high theoretical gravimetric capacity of 3861 mAh/g. Battery technologies using Li metal anodes have shown much higher energy density than current Li-ion batteries (LIBs) such as Li–O2 and Li–S systems. However, issues related to dendritic Li formation and low Coulombic efficiency have prevented the use of Li metal anode technology in many practical applications. In this paper, a thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability of the Li metal anodes. It is found that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm2 and 88% at 1.0 mA/cm2. The improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resu...

290 citations

Journal ArticleDOI
TL;DR: Owing to the conversion chemistry of the sulfur cathode, the lithium-sulfur (Li-S) batteries exhibit high theoretical energy density, but the intrinsic mobile redox centers during the sulfur/Li2S- to-lithium polysulfides solid-to-liquid phase transition induce low sulfur utilization and poor cycling life.
Abstract: Owing to the conversion chemistry of the sulfur cathode, the lithium–sulfur (Li–S) batteries exhibit high theoretical energy density. However, the intrinsic mobile redox centers during the sulfur/Li2S-to-lithium polysulfides solid-to-liquid phase transition induce low sulfur utilization and poor cycling life. Herein, the Janus separator of mesoporous cellular graphene framework (CGF)/polypropylene membrane to promote the utilization of sulfur cathode is introduced. The porous polypropylene membrane serves as an insulating substrate in contact with lithium anode while CGFs that possess high electrical conductivity of 100 S cm−1, a large mesopore volume of 3.1 cm3 g−1, and a huge surface area of 2120 m2 g−1 are adhered on cathode side to reactivate the shuttling-back polysulfides and to preserve the ion channels. Therefore, the Li–S cell with the “two-face” CGF Janus separator exhibit a high initial capacity of 1109 mAh g−1 and superior capacity preserved upon 800 mAh g−1 after 250 cycles at 0.2 C, which is 40% higher on sulfur utilization efficiency than the corresponding results with routine polypropylene separators. There are significant improvements on capacity as well as electrochemical kinetics. A very high areal capacity of 5.5 mAh cm−2 combined with high sulfur content of 80% and areal loading amount of 5.3 mg cm−2 is achieved for such advanced configuration. The negative impact of shuttle mechanism on lowering the utilization of sulfur and overall energy density of a Li–S battery is well eliminated by applying CGF separators. Consequently, employing carbonaceous materials as Janus face of separators enlightens new opportunities for improving the utilization of active materials and energy density of devices that involve complex phase evolution and conversion electrochemistry.

289 citations

Journal ArticleDOI
TL;DR: This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration and finds that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes.
Abstract: Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li7La3Zr2O12 (LLZO) phase in the LLZO–poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also...

279 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the separators used in liquid electrolyte Li-ion batteries are classified into three groups: microporous polymer membranes, non-woven fabric mats and inorganic composite membranes.

1,407 citations

Journal ArticleDOI
TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Abstract: There are growing concerns over the environmental, climate, and health impacts caused by using non-renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium-ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid-electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.

1,365 citations

Journal ArticleDOI
TL;DR: In this tutorial review, the most recent and significant scientific advances in the field of rechargeable batteries, whose performance is dependent on their underlying chemistry, are covered and special emphasis is given to progress in lithium-based technologies.
Abstract: The constant increase in global energy demand, together with the awareness of the finite supply of fossil fuels, has brought about an imperious need to take advantage of renewable energy sources. At the same time, concern over CO2 emissions and future rises in the cost of gasoline has boosted technological efforts to make hybrid and electric vehicles available to the general public. Energy storage is a vital issue to be addressed within this scenario, and batteries are certainly a key player. In this tutorial review, the most recent and significant scientific advances in the field of rechargeable batteries, whose performance is dependent on their underlying chemistry, are covered. In view of its utmost current significance and future prospects, special emphasis is given to progress in lithium-based technologies.

1,250 citations

Journal ArticleDOI
01 Jan 1979

914 citations

Journal ArticleDOI
TL;DR: In this article, a magnetophoretically formed high aspect ratio nano-nodes are used for hot-spot cooling in microfluidic environments, which can be dynamically chained and docked onto the hot spots to establish tuneable high-aspect ratio nanofins for the heat exchange between these hot spots and the liquid coolant.
Abstract: The limitation of hot spot cooling in microchips represents an important hurdle for the electronics industry to overcome with coolers yet to exceed the efficiencies required. Nanotechnology-enabled heat sinks that can be magnetophoretically formed onto the hot spots within a microfluidic environment are presented. CrO2 nanoparticles, which are dynamically chained and docked onto the hot spots, establish tuneable high-aspect-ratio nanofins for the heat exchange between these hot spots and the liquid coolant. These nanofins can also be grown and released on demand, absorbing and releasing the heat from the hot spots into the microfluidic system. It is shown that both high aspect ratio and flexibility of the fins have a dramatic effect on increasing the heat sinking efficiency. The system has the potential to offer a practical cooling solution for future electronics.

855 citations