scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review of recent research on mechanics of multifunctional composite materials and structures

01 Nov 2010-Composite Structures (Elsevier)-Vol. 92, Iss: 12, pp 2793-2810
TL;DR: In this paper, the authors identify the topics that are most relevant to multifunctional composite materials and structures and review representative journal publications that are related to those topics and make suggestions regarding future research needs.
About: This article is published in Composite Structures.The article was published on 2010-11-01. It has received 956 citations till now. The article focuses on the topics: Multi-function structure.
Citations
More filters
Journal ArticleDOI
TL;DR: The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated.

685 citations


Cites background from "A review of recent research on mech..."

  • ...They also reveal how complex and unique the architecture of rCFRPs can be, and how essential it is to investigate their mechanical response in-depth (Gibson 2010, Pickering 2009)....

    [...]

Journal ArticleDOI
TL;DR: In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint and the impacts and challenges are summarized to guide on-going and future research in the development of relaxors for the next generation electroac acoustic transducers.

556 citations

Journal ArticleDOI
20 Mar 2015-Science
TL;DR: Robotic materials can enable smart composites that autonomously change their shape, stiffness, or physical appearance in a fully programmable way, extending the functionality of classical “smart materials.”
Abstract: BACKGROUND The tight integration of sensing, actuation, and computation that biological systems exhibit to achieve shape and appearance changes (like the cuttlefish and birds in flight), adaptive load support (like the banyan tree), or tactile sensing at very high dynamic range (such as the human skin) has long served as inspiration for engineered systems. Artificial materials with such capabilities could enable airplane wings and vehicles with the ability to adapt their aerodynamic profile or camouflage in the environment, bridges and other civil structures that could detect and repair damages, or robotic skin and prosthetics with the ability to sense touch and subtle textures. The vision for such materials has been articulated repeatedly in science and fiction (“programmable matter”) and periodically has undergone a renaissance with the advent of new enabling technology such as fast digital electronics in the 1970s and microelectromechanical systems in the 1990s. ADVANCES Recent advances in manufacturing, combined with the miniaturization of electronics that has culminated in providing the power of a desktop computer of the 1990s on the head of a pin, is enabling a new class of “robotic” materials that transcend classical composite materials in functionality. Whereas state-of-the-art composites are increasingly integrating sensors and actuators at high densities, the availability of cheap and small microprocessors will allow these materials to function autonomously. Yet, this vision requires the tight integration of material science, computer science, and other related disciplines to make fundamental advances in distributed algorithms and manufacturing processes. Advances are currently being made in individual disciplines rather than system integration, which has become increasingly possible in recent years. For example, the composite materials community has made tremendous advances in composites that integrate sensing for nondestructive evaluation, and actuation (for example, for shape-changing airfoils), as well as their manufacturing. At the same time, computer science has created an entire field concerned with distributed algorithms to collect, process, and act upon vast collections of information in the field of sensor networks. Similarly, manufacturing has been revolutionized by advances in three-dimensional (3D) printing, as well as entirely new methods for creating complex structures from unfolding or stretching of patterned 2D composites. Finally, robotics and controls have made advances in controlling robots with multiple actuators, continuum dynamics, and large numbers of distributed sensors. Only a few systems have taken advantage of these advances, however, to create materials that tightly integrate sensing, actuation, computation, and communication in a way that allows them to be mass-produced cheaply and easily. OUTLOOK Robotic materials can enable smart composites that autonomously change their shape, stiffness, or physical appearance in a fully programmable way, extending the functionality of classical “smart materials.” If mass-produced economically and available as a commodity, robotic materials have the potential to add unprecedented functionality to everyday objects and surfaces, enabling a vast array of applications ranging from more efficient aircraft and vehicles, to sensorial robotics and prosthetics, to everyday objects like clothing and furniture. Realizing this vision requires not only a new level of interdisciplinary collaboration between the engineering disciplines and the sciences, but also a new model of interdisciplinary education that captures both the disciplinary breadth of robotic materials and the depth of individual disciplines.

480 citations


Cites background from "A review of recent research on mech..."

  • ..., sensing and actuation, selfhealing, energy harvesting) requirements of a system (30), but largely ignores the opportunities...

    [...]

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview on the properties of electrospun nanofibers and their application as reinforcements in composites is provided, including high aspect ratio and molecular orientation, large specific surface area, small pore size, and excellent mechanical performance.

406 citations

Journal ArticleDOI
TL;DR: State‐of‐the‐art harvesting materials and structures are presented with a focus on characterization, fabrication, modeling and simulation, and durability and reliability, and some perspectives and challenges for the future development of energy harvesting materials are highlighted.

296 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

Journal ArticleDOI
15 Feb 2001-Nature
TL;DR: A structural polymeric material with the ability to autonomically heal cracks is reported, which incorporates a microencapsulated healing agent that is released upon crack intrusion and polymerization of the healing agent is triggered by contact with an embedded catalyst, bonding the crack faces.
Abstract: Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

3,786 citations


"A review of recent research on mech..." refers background or methods in this paper

  • ...from [95] by permission from Macmillan Publishers Ltd, and (b) microcapsules contain a mixture of epoxy monomer and solvent Copyright Wiley-VCH verlag GmbH & Co....

    [...]

  • ...[95] developed self-healing polymers and polymer composites based on the use of a microencapsulated healing agent and a catalyst for polymerizing the healing agent....

    [...]

Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations


"A review of recent research on mech..." refers background in this paper

  • ...[168], while biomedical applications of hollow nanostructures have been reviewed by An and Hyeon [169]....

    [...]

Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations


"A review of recent research on mech..." refers background in this paper

  • ...[15], Anton and Sodano [16], and Cook-Chennault et al....

    [...]

  • ...Still more recently, Lin and Sodano [68,69] developed piezoelectric structural fibers consisting of conductive structural fibers such as carbon coated with a piezoelectric interphase layer and an outer electrode layer (Fig....

    [...]

  • ...Piezoelectric materials are often utilized for energy harvesting, and publications on this topic have been reviewed by Sodano et al. [15], Anton and Sodano [16], and Cook-Chennault et al. [17]....

    [...]

  • ...It appears that Sodano et al. [84] were the first to report that the power output from a randomly vibrating piezoelectric material is capable of recharging a discharged nickel metal hydride battery....

    [...]

  • ...Lin and Sodano [94] demonstrated that their previously developed SiC/BaTiO3 piezoelectric structural fiber [69] could be used as a structural capacitor by taking advantage of the dielectric nature of the BaTiO3 coating on the SiC fiber (i.e., the BaTiO3 coating was employed as a cylindrical capacitor)....

    [...]

Journal ArticleDOI
TL;DR: A review of natural fiber reinforced composites is presented in this paper with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface.
Abstract: Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and non-abrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers and these draw backs become critical issue. This review presents the reported work on natural fiber reinforced composites with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface. © 1999 John Wiley & Sons, Inc. Adv in Polymer Techn 18: 351–363, 1999

2,210 citations