scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review of regional groundwater flow modeling

01 Apr 2011-Geoscience frontiers (Elsevier)-Vol. 2, Iss: 2, pp 205-214
TL;DR: A review of the historical development of regional groundwater flow modeling can be found in this paper, where the authors discuss the application of large-scale regional water flow models to analyze regional flow systems, simulate water budget components changes, and optimize groundwater development scenarios.
Abstract: Significant advances in regional groundwater flow modeling have been driven by the demand to predict regional impacts of human inferences on groundwater systems and associated environment. The wide availability of powerful computers, user friendly modeling systems and GIS stimulates an exponential growth of regional groundwater modeling. Large scale transient groundwater models have been built to analyze regional flow systems, to simulate water budget components changes, and to optimize groundwater development scenarios. This paper reviews the historical development of regional groundwater modeling. Examples of Death Valley and Great Artesian Basin transient groundwater models are introduced to show the application of large scale regional groundwater flow models. Specific methodologies for regional groundwater flow modeling are descried and special issues in regional groundwater flow modeling are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: This study aims to provide a common basis for CPM climate simulations by giving a holistic review of the topic, and presents the consolidated outcome of studies that addressed the added value of CPMClimate simulations compared to LSMs.
Abstract: Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing 10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

833 citations


Cites background from "A review of regional groundwater fl..."

  • ...Even in state-of-the-art CPMs, feedbacks between hydrologic subsurface models (e.g., simulating groundwater dynamics) with the land surface and atmosphere are generally neglected or oversimplified [e.g., Zhou and Li, 2011]....

    [...]

01 Dec 2004
TL;DR: In this article, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation, which involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models.
Abstract: Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The traditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty. In this paper we review a range of strategies for assessing structural uncertainties in models. The existing strategies fall into two categories depending on whether field data are available for the predicted variable of interest. To date, most research has focussed on situations where inferences on the accuracy of a model structure can be made directly on the basis of field data. This corresponds to a situation of ‘interpolation’. However, in many cases environmental models are used for ‘extrapolation’; that is, beyond the situation and the field data available for calibration. In the present paper, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation. It involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models. � 2005 Elsevier Ltd. All rights reserved.

417 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the literature on groundwater-surface water interaction (GW-SW) at the regional scale and examine its characteristics at different scales and identify specific challenges.
Abstract: Scientists and practitioners agree that integrated water resource management is necessary, with an increasing need for research at the regional scale (10 3 to 10 5 km 2 ). At this scale interactions between environmental and human systems are fully developed and global change is linked to local actions. The groundwater-surface water interaction (GW-SW) is of particular interest. Herein we review the scientific journal literature and examine GW-SW at the regional scale. We briefly review all existing literature on GW-SW, then summarise its characteristics at different scales and identify specific challenges of the regional scale. We explore whether GW-SW should be treated differently at regional and local scales. Regional GW-SW is rarely examined in experimental field studies, which almost exclusively cover small areas. However, GW-SW is often integral to large scale coupled models. Thus, we collate information about existing models and their regional applications. Fully coupled, physics-based models have great potential to meet the technical challenges. However, limited data availability hampers the application of complex models at the regional scale and loosely coupled schemes are more widely applied. Many integrated modelling concepts have been published, but none have been applied in a wide range of settings. Thus, it is impossible to compare the performance of different approaches. Comparative analyses of existing regional scale integrated models in the context of different data availability and geographic conditions are needed. Unfortunately, peer-reviewed journal literature no longer provides a representative picture of the subject as models are becoming Btoo big to be published^ or too pragmatic.

221 citations


Cites background from "A review of regional groundwater fl..."

  • ...Many authors define the relative scarcity of data as the main challenge for regional scale work (Candela et al. 2014; Refsgaard et al. 2010; Zhou and Li 2011)....

    [...]

Journal ArticleDOI
TL;DR: An overview of hydrogeological processes and concepts regarding groundwater flow and contaminant transport in karstic systems is presented, followed by a short discussion on surface water and groundwater interaction.

113 citations

Journal ArticleDOI
TL;DR: In this article, the relationship between land subsidence features and geo-environmental factors is investigated by comparing two machine learning algorithms (MLA): maximum entropy (MaxEnt) and genetic algorithm rule-set production (GARP) algorithms in the Kashmar Region, Iran.

77 citations

References
More filters
OtherDOI
TL;DR: A computer program for simulating ground-water flow in three dimensions by using a block-centered finite-difference approach and has a modular structure, which permits the addition of new packages to the program without modifying existing packages.
Abstract: A computer program for simulating ground-water flow in three dimensions is presented. This report includes detailed explanations of physical and mathematical concepts on which the model is developed. Ground-water flow within the aquifer is simulated by using a block-centered finite-difference approach. The program is written in Fortran 77 and has a modular structure, which permits the addition of new packages to the program without modifying existing packages.

3,298 citations

OtherDOI
01 Jan 2000
TL;DR: In this paper, the authors propose a method to solve the problem of homonymity in homonym identification, i.e., homonym-of-individuals-with-groups.
Abstract: ...............................................................................................................................................................................

2,449 citations

Journal ArticleDOI
TL;DR: In this paper, three types of flow systems may occur in a small basin: local, intermediate, and regional, and the higher the topographic relief, the greater the importance of the local systems.
Abstract: Theoretically, three types of flow systems may occur in a small basin: local, intermediate, and regional. The local systems are separated by subvertical boundaries, and the systems of different order are separated by subhorizontal boundaries. The higher the topographic relief, the greater is the importance of the local systems. The flow lines of large unconfined flow systems do not cross major topographic features. Stagnant bodies of groundwater occur at points where flow systems meet or branch. Recharge and discharge areas alternate; thus only part of the basin will contribute to the baseflow of its main stream. Motion of groundwater is sluggish or nil under extended flat areas, with little chance of the water being freshened. Water level fluctuations decrease with depth, and only a small percentage of the total volume of the groundwater in the basin participates in the hydrologic cycle.

1,430 citations

Journal ArticleDOI
TL;DR: It is concluded that uncertainty assessment is not just something to be added after the completion of the modelling work, but should be seen as a red thread throughout the modelling study starting from the very beginning.
Abstract: A terminology and typology of uncertainty is presented together with a framework for the modelling process, its interaction with the broader water management process and the role of uncertainty at different stages in the modelling processes. Brief reviews have been made of 14 different (partly complementary) methods commonly used in uncertainty assessment and characterisation: data uncertainty engine (DUE), error propagation equations, expert elicitation, extended peer review, inverse modelling (parameter estimation), inverse modelling (predictive uncertainty), Monte Carlo analysis, multiple model simulation, NUSAP, quality assurance, scenario analysis, sensitivity analysis, stakeholder involvement and uncertainty matrix. The applicability of these methods has been mapped according to purpose of application, stage of the modelling process and source and type of uncertainty addressed. It is concluded that uncertainty assessment is not just something to be added after the completion of the modelling work. Instead uncertainty should be seen as a red thread throughout the modelling study starting from the very beginning, where the identification and characterisation of all uncertainty sources should be performed jointly by the modeller, the water manager and the stakeholders.

1,112 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the steady-state flow in regional groundwater basins using digital computer solutions of appropriately designed mathematical models and provided a theoretical basis for the following properties of regional flow systems: (1) groundwater discharge will tend to be concentrated in major valleys; (2) recharge areas are invariably larger than discharge areas; (3) in hummocky terrain, numerous sub-basins are superposed on the regional system; (4) buried aquifers tend to concentrate flow toward the principal discharge area, and need not outcrop to produce artesian
Abstract: Details of steady-state flow in regional groundwater basins can be investigated using digital computer solutions of appropriately designed mathematical models. The factors that must be considered are: (1) ratio of depth to lateral extent of the basin; (2) Watertable configuration; and (3) stratigraphy and resulting subsurface variations in permeability. The results of this study provide a theoretical basis for the following properties of regional flow systems: (1) groundwater discharge will tend to be concentrated in major valleys; (2) recharge areas are invariably larger than discharge areas; (3) in hummocky terrain, numerous sub-basins are superposed on the regional system; (4) buried aquifers tend to concentrate flow toward the principal discharge area, have a limiting effect on sub-basins, and need not outcrop to produce artesian flow conditions; (5), stratigraphic discontinuities can lead to distributions of recharge and discharge areas that are difficult to anticipate and that are largely independent of the water-table configuration. (Key words: Groundwater; computers, digital; drainage basin characteristics)

487 citations